The structures K(F,G)

The definition

Definition 1. Let $L \subseteq L_{ALL}$, we define L^2 as the language which adds a second sort of variables (sometimes called 'the set sort') X, Y, \ldots , which we interpret as bounded functions (and thus the $\{0, 1\}$ -valued functions as bounded sets). It also contains the relation \in between the number sort and the set sort and the equality symbol for the set sort also denoted =.

Definition 2. Let $L \subseteq L_n$. The Boolean values structure K(F, G) in L^2 consists of an *L*-closed family of function on a sample space Ω and a family *G* of some functions $\Theta \in \mathcal{M}$ assigning to $\omega \in \Omega$ a function $\Theta_{\omega} \in \mathcal{M}$ that maps a subset dom (Θ_{ω}) of \mathcal{M}_n into \mathcal{M}_n .

We extend the definition of K(F) by defining how $\Theta \in G$ operates on F:

$$\Theta(\alpha)(\omega) = \begin{cases} \Theta_{\omega}(\alpha(\omega)) & \text{if } \alpha(\omega) \in \operatorname{dom}(\Theta_{\omega}) \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, it is required that for all $\Theta \in G$ and all $\alpha \in F$: $\Theta(\alpha) \in F$.

The value of set sort equality is given by

$$\llbracket \Theta = \Xi \rrbracket = \{ \omega \in \Omega; \Theta_{\omega} = \Xi_{\omega} \} / \mathcal{I},$$

and the value of the elementhood relation is

$$\llbracket \alpha \in \Theta \rrbracket = \{ \omega \in \Omega; \Theta_{\omega}(\alpha(\omega)) = 1 \} / \mathcal{I}$$

Further we add two inductive clauses for second-order quantifiers:

$$\llbracket (\exists X) A(X) \rrbracket = \bigvee_{\Theta \in G} \llbracket A(\Theta) \rrbracket$$
$$\llbracket (\forall X) A(X) \rrbracket = \bigwedge_{\Theta \in G} \llbracket A(\Theta) \rrbracket$$

Exercise 3. Show that in K(F,G) we have

$$\llbracket \alpha = \beta \to \Theta(\alpha) = \Theta(\beta) \rrbracket = 1_{\mathcal{B}}$$
$$\llbracket \Theta = \Xi \to \Theta(\alpha) = \Xi(\alpha) \rrbracket = 1_{\mathcal{B}}.$$

The structure $K(F_{bit}, G_{bit})$

Definition 4. Recall the family F_{bit} consisting of the functions

$$0: \omega \mapsto 0$$

$$1: \omega \mapsto 0$$

$$\alpha: \omega \mapsto \omega \mod 2$$

$$\beta: \omega \mapsto \omega + 1 \mod 2,$$

over the sample space $\Omega = \{0, \ldots, n-1\}$, where *n* is nonstandard and even. Let us define the family G_{bit} to obtain a structure $K(F_{bit}, G_{bit})$. Each $\Theta \in G_{bit}$ is computed by some tuple

$$\hat{\theta} = (\theta_0, \dots, \theta_{m-1}) \in \mathcal{M}, \quad m \in \mathcal{M}_n, \quad \theta_i \in F_{bit},$$

we define for such a tuple and $\alpha \in F_{bit}$ the value $\hat{\theta}(\alpha) \in F_{bit}$ as

$$\hat{\theta}(\alpha)(\omega) = \begin{cases} \theta_{\alpha(\omega)}(\omega) & \alpha(\omega) < m \\ 0 & \text{otherwise,} \end{cases}$$

therefore each $\Theta \in G_{bit}$ induces a map $F \to F$, and we interpret any term of the form $\Theta(\alpha)$ as $\hat{\theta}(\alpha)$.

Exercise 5. The way we defined the interpretation of elements of G_{bit} is a bit off-hand. Describe for each $\Theta \in G_{bit}$ the slices Θ_{ω} , for each $\omega \in \Omega$.

Exercise 6. Verify that for any $\gamma \in F_{bit}$ and $\Gamma \in G_{bit}$ we have

$$\Gamma(\gamma) \in F_{bit}.$$

Remark 7. Note that the definition of G_{bit} only involved the family F_{bit} in one place, namely in the types of the elements of the tuples computing each $\Theta \in G_{bit}$. We could define generally for any family F a family G(F) computed by tuples of elements from F, all the structures appearing in the book are of the form K(F, G(F)).

Exercise 8. Let $\Lambda \in G_{bit}$ be computed by (α, β) . Find all $\gamma \in F_{bit}$ such that

$$\llbracket \gamma \in \Lambda \rrbracket = 1_{\mathcal{B}}.$$

Exercise 9. Is there $\Theta \in G_{bit}$ such that

$$\{\gamma \in F_{bit}; \llbracket \gamma \in \Theta \rrbracket = 1_{\mathcal{B}}\} = \{0, 1, \alpha, \beta\}?$$

What about $\Theta \in G_{bit}$ such that $\{\gamma \in F_{bit}; [\![\gamma \in G_{bit}]\!] = 1_{\mathcal{B}}\} = \{0, 1, \alpha\}$?

Exercise 10. Does extensionality hold in $K(F_{bit}, G_{bit})$? Namely, is

$$\llbracket (\forall x)(\Theta(x) = \Xi(x)) \to \Theta = \Xi \rrbracket?$$