Cut \mathbb{M}_n , language L_n , and family F_{rud}

Through the rest of this exercise sheet, n is a fixed non-standard number in $\mathbb M.$

Exercise 1. We define \mathbb{M}_n as $\bigcup_{t \in \mathbb{M} \setminus \mathbb{N}} \{b \mid b \leq 2^{n^{1/t}}\}$. We call it a **large canonical model**. Show that \mathbb{M}_n is not a substructure of the L_{ALL} -structure \mathbb{M} .

Exercise 2. Let $L_n \subseteq L_{ALL}$ be the largest language so that \mathbb{M}_n is a substructure of the L_n -structure \mathbb{M} . Describe this language explicitly. Is L_{PV} a subset of L_n ?

Exercise 3. Is it true that any L_n -substructure of \mathbb{M} is of the form \mathbb{M}_m for a suitable m (note that m might differ from n)?

Is it true that any L_n -substructure of \mathbb{M} is a cut?

For a language L, we define $\Sigma_{\infty}^{b}(L)$ as the class of all bounded formulas in the language L (i.e. all the quantifiers are of the form $\forall x \leq t$, or $\exists x \leq t$, where tis an L-term not containing x). The class $\forall \Sigma_{\infty}^{b}(L)$ denotes the universal closure of $\Sigma_{\infty}^{b}(L)$.

Exercise 4. Let F be any L_n -closed function family which contains all constants from N. Let ψ be a $\forall \Sigma^b_{\infty}(L_n)$ -sentence (i.e. no parameters from F). Show that

 $\mathbb{N} \vDash \psi$ iff $\llbracket \psi \rrbracket = 1_{\mathcal{B}}$.

Note that there is no a priori relation between n and a sample space Ω .

We now fix a sample space Ω as all definable subsets of $[n] (= \{0, \ldots, n-1\})$. A **decision tree** is defined as a codable rooted binary tree, with inner nodes labeled as queries $i \in {}^{?} \omega$ for $i \in [n]$ and two outgoing edges labeled as **yes** or **no**. A **depth** of a tree is the length of the longest path from the root. A **labeling** l of a tree T is a mapping from the leaves of T into \mathbb{M}_n . Finally, a labeled tree (T, l) defines a function from Ω into \mathbb{M}_n with the following meaning: for $\omega \in \Omega$ let $T(\omega)$ be the unique leaf obtained by following the path from the root of Twith all answers consistent with ω . The function (T, l) then maps ω to $l(T(\omega))$.

Exercise 5. We define the function family F_{rud} as containing all the function α , such that there is a labeled tree (T, l) satisfying

- $\alpha(\omega) = l(T(\omega))$ for all ω ;
- the depth of T is $\leq n^{1/t}$ for some non-standard t.

Show that F_{rud} contains all the constants from \mathbb{M}_n and is L_n -closed.

Exercise 6. Find a (ideally simple) function from Ω to \mathbb{M}_n which is not in F_{rud} .