From truth in \mathbb{N} to validity in K(F)

Recall the following statement

Proposition 1. Let $L \subseteq L_{ALL}$ be arbitrary and F be an L-closed family. Let φ be universal L-sentence true in \mathbb{N} . Then, $\llbracket \varphi \rrbracket = 1_{\mathcal{B}}$. Moreover, if L contains all standard constant functions, and φ is $\exists \forall$ -sentence true in \mathbb{N} , then $\llbracket \varphi \rrbracket = 1_{\mathcal{B}}$.

Let us now have an L(F)-formula $\exists y \ \varphi(\overline{x}, y)$, where φ is open. Let $f(\overline{x})$ be a function symbol not among the symbols in φ . Consider the following axiom $\mathsf{Sk}[\exists y \ \varphi(\overline{x}, y); f]$ which is defined as

$$\forall \overline{x}, y \ [\varphi(\overline{x}, y) \to \varphi(\overline{x}, f(\overline{x}))].$$

Exercise 2. Prove that $\mathsf{Sk}[\exists y \, \varphi(\overline{x}, y); f]$ implies (in predicate calculus)

$$\forall \overline{x} \left[\exists y \, \varphi(\overline{x}, y) \leftrightarrow \varphi(\overline{x}, f(\overline{x})) \right]$$

Exercise 3. Let us now have an L(F)-formula $\forall y \varphi(\overline{x}, y)$, where φ is open. Try to come up with a universal sentence $\mathsf{Sk}[\forall y \varphi(\overline{x}, y); f]$ which would imply (in predicate calculus)

$$\forall \overline{x} \ [\forall y \ \varphi(\overline{x}, y) \leftrightarrow \varphi(\overline{x}, f(\overline{x}))].$$

Exercise 4. For an L(F)-sentence ψ of the form $Q_1x_1 \dots Q_kx_x \varphi(\overline{x})$, with φ open, iterating the above construction, try to come up with a conjuction of k universal sentences $\mathsf{Sk}[\psi; f_1, \dots, f_k]$ which would imply (in predicate calculus)

$$\psi \leftrightarrow \varphi(f_1,\ldots,f_k).$$

Any tuple of functions f_1, \ldots, f_k from L_{ALL} which satisfies $\mathsf{Sk}[\psi; f_1, \ldots, f_k]$ is called a **Skolem tuple** for ψ . For such a tuple, the open sentence $\varphi(f_1, \ldots, f_k)$ is denoted ψ_{Sk} .

The main application of the above is the following

Lemma 5. Let ψ as in the previous exercise, additionally without parameters from F. Assume L contains a Skolem tuple for ψ and all standard constants. Then, for any L-closed family F it holds that

$$\mathbb{N} \models \psi$$
 iff $\llbracket \psi \rrbracket = 1_{\mathcal{B}}$.

Exercise 6. Prove the above lemma.