Witnessing in definable families

Lemma 1. Assume $F \in \mathbb{M}$. Consider a countable antichain $\{b_k\}_{k \in \mathbb{N}}$ with $b_k = B_k/\mathcal{I}$. Let $\{\alpha_k\}_{k \in \mathbb{N}}$ be sequence of elements of F.

Assume for all $k \in \mathbb{N}$, there is $\beta_k \in F$ so that for all $l \leq k$

$$\beta_k(\omega) = \alpha_l(\omega), \text{ for } \omega \in B_l \setminus \bigcup_{i < l} B_i.$$
 (1)

Then, there exists a single $\beta \in F$, such that for all $l \leq k$

$$\beta(\omega) = \alpha_l(\omega), \text{ for } \omega \in B_l \setminus \bigcup_{i < l} B_i.$$
 (2)

Exercise 2. Assuming the above lemma holds, prove that $[\![\beta = \alpha_k]\!] \ge b_k$. (This is how the above lemma is formulated in the book.)

Exercise 3. Prove the lemma. The fact that $F \in \mathbb{M}$ is crucial. It might also help to use two main properties of the model \mathbb{M} .

Definition 4. We say F is closed under definiton by cases, if for any $\alpha_0, \alpha_1 \in F$, and any $B \in \mathcal{A}$, there is $\beta \in F$ such that

$$\beta(\omega) = \begin{cases} \alpha_0(\omega), & \text{if } \omega \in B, \\ \alpha_1(\omega), & \text{otherwise.} \end{cases}$$

Exercise 5. Show that F closed under definition by cases satisfies (1) from the first lemma.

Theorem 6. Assume F is definable and is closed under definition by cases. Let $\exists xC(x)$ be an L-sentence, possibly with parameters from F. Then, there exists $\alpha \in F$ such that

$$\llbracket \exists x \ C(x) \rrbracket = \llbracket C(\alpha) \rrbracket.$$

Exercise 7. Assuming the above theorem, derive the following corollary.

Corollary 8. Let F as above and A an L-sentence, possibly with parameters, of the form

$$\exists x_1 \,\forall y_1 \ldots \exists x_k \,\forall y_k \, B(x_1, y_1, \ldots, x_k, y_k),$$

where B is arbitrary. Then, there are random variables $\alpha_1, \beta_1, \ldots, \alpha_k, \beta_k \in F$, satisfying

$$\llbracket A \rrbracket = \llbracket B(\alpha_1, \beta_1, \dots, \alpha_k, \beta_k) \rrbracket$$

(In the book, random variables α_i, β_i satisfy a subtler recursive condition.)

Consider $\Omega = \{0,1\}^n$ for *n* non-standard. Let L_{PV} denote symbols for polynomial-time computable functions on \mathbb{N} , and F_{PV} denote interpretation of L_{PV} on Ω .

Exercise 9. Argue that F_{PV} is neither definable nor is closed under definition by cases. (You don't need to prove this formally.)