Witnessing quantifiers

Exercise 1. Let A be an L-sentence of the form

 $(\exists x_1)(\forall y_1)\ldots(\exists x_k)(\forall y_k)(B(x_1,y_1,\ldots,x_k,y_k)).$

Let M be an L-structure ({0,1}-valued) and consider the two player game played by the \exists -player and the \forall -player of the following form. The players alternate in picking an element $a_i \in M$ or $b_i \in M$ to substitute for the quantifier corresponding to their name. The \exists -player tries to make the truth value of $B(a_1, b_1, \ldots, a_k, b_k)$ equal to 1 and the \forall -player tries to make it 0.

Show that $M \models A$ if and only if the \exists -player has a winning strategy.

Exercise 2. Let *A* be an *L*-sentence of the form

 $(\exists x_1)(\forall y_1)\ldots(\exists x_k)(\forall y_k)(B(x_1,y_1,\ldots,x_k,y_k)).$

For any *L*-closed family *F* and consider the two player game played by the \exists -player and the \forall -player of the following form. The players alternate in picking an element $\alpha_i \in F$ or $\beta_i \in F$ to substitute for the quantifier corresponding to their name. The \exists -player tries to make the truth value of $[\![B(a_1, b_1, \ldots, a_k, b_k)]\!]$ as close to $1_{\mathcal{B}}$ as possible and the \forall -player tries to make it as close to $0_{\mathcal{B}}$ as possible.

Show that there is a language L, an L-closed F and an L-sentence A such that the \exists -player does not have a strategy to ensure that

 $\llbracket B(\alpha_1,\beta_1,\ldots,\alpha_k,\beta_k) \rrbracket = \llbracket (\exists x_1)(\forall y_1)\ldots(\exists x_k)(\forall y_k)(B(x_1,y_1,\ldots,x_k,y_k)) \rrbracket.$

Remark 3. Assume that we can find witnesses $\alpha_1, \ldots, \beta_k \in F$ such that

 $\llbracket (\exists x_1)(\forall y_1) \dots (\exists x_k)(\forall y_k)(B(x_1, y_1, \dots, x_k, y_k, \gamma)) \rrbracket = \llbracket B(\alpha_1, \beta_1, \dots, \alpha_k, \beta_k, \gamma) \rrbracket,$

then we can calculate directly the value directly as

 $\{\omega \in \Omega; B(\alpha_1(\omega), \beta_1(\omega), \dots, \alpha_k(\omega), \beta_k(\omega), \gamma(\omega))/\}\mathcal{I}.$

If we do not have such witnesses, the value may have nothing to do with

 $\{\omega \in \Omega; (\exists x_1)(\forall y_1) \dots (\exists x_k)(\forall y_k)(B(x_1, y_1, \dots, x_k, y_k, \gamma(\omega))))\}/\mathcal{I}.$

Propositional approximations of truth values

Exercise 4. Let A be an L-sentence and F be L-closed. Then there are countably many $\alpha_k \in F$, $k \in \mathbb{N}$, such that

$$\llbracket (\exists x) B(x) \rrbracket = \bigvee_{k \in \mathbb{N}} \llbracket B(\alpha_k) \rrbracket.$$

Exercise 5. Let A be an L-sentence of the form

$$(\exists x_1)(\forall y_1)\ldots(\exists x_k)(\forall y_k)(B(x_1,y_1,\ldots,x_k,y_k)).$$

and F be L-closed and let $\epsilon>0$ be standard. Then there is $\ell\in\mathbb{N}$ and elements of F

$$\alpha_1^{i_1}, \beta_1^{i_1, j_1}, \alpha_2^{i_1, j_1, i_2}, \dots, \beta_k^{i_1, \dots, j_k},$$

with $i_1, \ldots, j_l < \ell$ such that

$$d(\llbracket A \rrbracket, \bigvee_{i_1} \bigwedge_{j_1} \dots \bigvee_{i_k} \bigwedge_{j_k} \llbracket B(\alpha_1^{i_1}, \beta_1^{i_1, j_1}, \dots, \beta_k^{i_1, \dots, j_k}) \rrbracket) < \epsilon$$