The models K(F) continued

Definition 1. For a prefix class of formulas Γ and a theory T, let $\Gamma(T)$ be the set of all formulas from T which are in the prefix class Γ . E.g. $\forall(T)$ denotes the set of universal formulas from T.

Theorem 2. Let F be an L-closed family. Then, $\forall(\operatorname{Th}(\mathbb{N}))$ is valid in K(F). Moreover, if F contains all elements of \mathbb{N} as constant functions, then $\exists \forall(\operatorname{Th}(\mathbb{N}))$ is valid in K(F).

Exercise 3 (*). Can we, at least in theory, prove lower bounds for lengths of proofs of some propositional proof system using a suitable model K(F) and Ajtai's Argument?

Exercise 4. Find L and an L-closed family F such that $\operatorname{Th}(\mathbb{N})$ is valid in K(F).

Exercise 5. Find L and an L-closed family F such that either $I\Delta_0$ or T_2 is valid in K(F), but PA is not.

Exercise 6 (*). Find L and an L-closed family F such that PA is valid in K(F), but $Th(\mathbb{N})$ is not.

The measure of \mathcal{B}

Definition 7. Let $a, b \in \mathcal{B}$, we define $d(a, b) = \mu(a \triangle b)$, where \triangle denotes the symmetric difference (or xor).

Exercise 8. Show that d(a, b) is a metric on \mathcal{B} . Furthermore, show that for any $a, a', b, b' \in \mathcal{B}$:

$$d(a,b) = d(\neg a, \neg b)$$

$$d(a \land b, a' \land b') \le d(a,a') + d(b,b')$$

$$d(a \lor b, a' \lor b') \le d(a,a') + d(b,b')$$

Exercise 9. Let F be an L-closed family, let A(x) be an open L-formula, with the only free variable x, and let $\alpha \in F$.

Show that for every standard $\epsilon > 0$: $\Pr_{\omega \in \Omega}[A(\alpha(\omega))] \ge \mu(\llbracket A(\alpha) \rrbracket) - \epsilon$.

Exercise 10. Find *L* and an *L*-closed family *F*, such that for some $\gamma \in F$, we have $[\![(\forall z)A(\gamma, z)]\!] = 1_{\mathcal{B}}$ but $\Pr_{\omega \in \Omega}[(\forall z)A(\gamma(\omega), z)] = 0$.

Definition 11. Let A(x, z) be an open *L*-formula. We say $\xi \in L_{all}$ is a counterexample function for $(\forall z)A(x, z)$, if $\mathbb{N} \models (\forall x)((\exists z) \neg A(x, z) \rightarrow \neg A(x, \xi(x)))$.

Exercise 12. Assume that A(x, z) is an open *L*-formula, ξ is a counter-exmaple function for $\forall z A(x, z)$ and *F* is an *L*-closed family closed under ξ .

Then for any $\alpha \in F$ and standard $\epsilon > 0$, we have

$$\Pr_{\omega \in \Omega} [(\forall z) (A(\alpha(\omega), z))] \ge \mu(\llbracket (\forall z) A(\alpha, z) \rrbracket) - \epsilon.$$