Bounded Arithmetic S_2 – part II

Recall L_{PA} is the language $0, 1, +, \cdot, <$ and PA^- is the theory in L_{PA} axiomatizing positive parts of discreetly-ordered rings. The axioms are as follows.

 PA^{-}

- $\forall x, y, z ((x+y) + z = x + (y+z))$
- $\forall x, y (x+y) = (y+x)$
- $\forall x, y, z ((x \cdot y) \cdot z = x \cdot (y \cdot z))$
- $\forall x, y (x \cdot y) = (y \cdot x)$
- $\forall x, y, z (x \cdot (y+z)) = x \cdot y + x \cdot z$
- $\forall x ((x+0=x) \land (x \cdot 0=0))$
- $\forall x (x \cdot 1 = x)$
- $\forall x, y, z ((x < y \land y < z) \rightarrow x < z)$
- $\bullet \ \forall x \ \neg x < x$
- $\forall x, y \ (x < y \lor x = y \lor y < x)$
- $\forall x, y, z \ (x < y \rightarrow x + z < y + z)$
- $\forall x, y, z \ (0 < z \land x < y \rightarrow x \cdot z < y \cdot z)$
- $\forall x, y \ (x < y \rightarrow \exists z \ x + z = y)$
- $0 < 1 \land \forall x \ (x > 0 \to x \ge 1)$
- $\forall x \ (x \ge 0)$

Below \mathbb{N} is the standard model interpreting L_{PA} symbols in the usual way. Of course, \mathbb{N} models PA^- .

As a first step we expand L_{PA} by an additional unary function symbol $\lfloor \frac{x}{2} \rfloor$ together with the axiom

• $\forall x, y \ (x = \lfloor \frac{y}{2} \rfloor \leftrightarrow (2 \cdot x = y \lor 2 \cdot x + 1 = y))$

Exercise 1. Show that there is a unique interpretation of $\lfloor \frac{x}{2} \rfloor$ in \mathbb{N} satisfying the above axiom.

From now on \mathbb{N} is assumed to interpret $\lfloor \frac{x}{2} \rfloor$, as well.

As a second step, we add a unary function symbol $\left|x\right|$ together with the following axioms

- |0| = 0
- |1| = 1
- $\forall x, y \ (x \le y \to |x| \le |y|)$
- $\forall x \ (x \neq 0 \rightarrow (|2 \cdot x| = |x| + 1 \land |2 \cdot x + 1| = |x| + 1))$
- $\forall x \ (x \neq 0 \rightarrow |x| = ||\frac{x}{2}|| + 1)$

Exercise 2. Show that there is a unique interpretation of |x| in \mathbb{N} satisfying the above axioms.

From now on \mathbb{N} is assumed to interpret |x|, as well. Finally, we add a binary function symbol x # y with the following axioms

- $\forall x (0 \# x = 1)$
- $\forall x, y \ (x \# y = y \# x)$
- $\forall x (1 \# (2 \cdot x) = 2 \cdot (1 \# x) \land 1 \# (2 \cdot x + 1) = 2 \cdot (1 \# x))$
- $\forall x, y (|x \# y| = |x| \cdot |y| + 1)$
- $\forall x, y, z (|x| = |y| \rightarrow x \# z = y \# z)$
- $\forall x, y, z, w \ (|x| = |y| + |z| \to x \# w = (y \# w) \cdot (z \# w))$

Exercise 3. Show that there is a unique interpretation of x # y in \mathbb{N} satisfying the above axioms.

The motivation behind x # y is the following simple but very important observation.

Exercise 4. Let x, y be numbers representing binary strings in the standard way. Then, the bit-length of y is poly-size bounded in the bit-length of x if and only if y as a number is bounded by a term resulting from applying # to x iteratively.

Concretely

$$|y| \le |x|^c \iff y \le x \# \cdots \# x$$

with c a fixed constant and # applied exactly c-times.

From now on \mathbb{N} is assumed to interpret x # y, as well.

Remark 5. * It is possible to solve Exercises 1 and 2 with \mathbb{N} being replaced by an arbitrary $I\Delta_0$ model \mathbb{M} .

Exercise 3 is a bit tricky. First of all one needs to be sure that the operation x # y is even definable by a Δ_0 -formula. This is true, although not trivial, i.e. there is a Δ_0 -formula $\varphi(x, y, z)$ so that in $\mathbb{N} \quad \forall x, y, z \ (x \# y = z \leftrightarrow \varphi(x, y, z))$.

By choosing $\varphi(x, y, z)$ well enough, one can show that $I\Delta_0$ does indeed prove the uniqueness of the interpretation of x # y.

However, $I\Delta_0$ is not able to prove $\forall x, y \exists z \varphi(x, y, z)$ and so there exist models of $I\Delta_0$ where x # y can only be interpreted as a *partial* operation.

The language L_{PA} with newly introduced symbols is denoted as L_{S_2} and the corresponding theory is called *BASIC*.

The notion of a bounded L_{S_2} -formula is defined in the same way as before and so we can overload Δ_0 . Finally, the overloaded $I\Delta_0$ is denoted as S_2 .

Remark 6. * The number 2 in S_2 indicates the presence of # in the language. The theory without such a symbol is called S_1 , while at the same time, it is possible to iteratively define $\#_k$ symbols (the usual # here is $\#_2$). Such operations are all super-polynomial (quasi-polynomial and faster) but are still not as fast as the exponential function.

Fact 7. Theorem of Parikh still applies in the current context, i.e. for any Δ_0 -formula $\varphi(x, y)$

$$S_2 \vdash \forall x \exists y \varphi(x, y) \implies S_2 \vdash \forall x \exists y \le t(x) \varphi(x, y),$$

with t(x) - an L_{S_2} -term, i.e. a quasi-polynomial.

Exercise 8. What kind of deterministic/non-deterministic witnessing do we get for the theory S_2 and Δ_0 -definable total relation P(x, y)? Compare it to the witnessing for $I\Delta_0$.