Bounded Arithmetic S_{2} - part II

Recall $L_{P A}$ is the language $0,1,+, \cdot,<$ and $P A^{-}$is the theory in $L_{P A}$ axiomatizing positive parts of discreetly-ordered rings. The axioms are as follows.
$P A^{-}$

- $\forall x, y, z((x+y)+z=x+(y+z))$
- $\forall x, y(x+y)=(y+x)$
- $\forall x, y, z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
- $\forall x, y(x \cdot y)=(y \cdot x)$
- $\forall x, y, z(x \cdot(y+z))=x \cdot y+x \cdot z$
- $\forall x((x+0=x) \wedge(x \cdot 0=0))$
- $\forall x(x \cdot 1=x)$
- $\forall x, y, z((x<y \wedge y<z) \rightarrow x<z)$
- $\forall x \neg x<x$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y, z(x<y \rightarrow x+z<y+z)$
- $\forall x, y, z(0<z \wedge x<y \rightarrow x \cdot z<y \cdot z)$
- $\forall x, y(x<y \rightarrow \exists z x+z=y)$
- $0<1 \wedge \forall x(x>0 \rightarrow x \geq 1)$
- $\forall x(x \geq 0)$

Below \mathbb{N} is the standard model interpreting $L_{P A}$ symbols in the usual way. Of course, \mathbb{N} models $P A^{-}$.

As a first step we expand $L_{P A}$ by an additional unary function symbol $\left\lfloor\frac{x}{2}\right\rfloor$ together with the axiom

- $\forall x, y\left(x=\left\lfloor\frac{y}{2}\right\rfloor \leftrightarrow(2 \cdot x=y \vee 2 \cdot x+1=y)\right)$

Exercise 1. Show that there is a unique interpretation of $\left\lfloor\frac{x}{2}\right\rfloor$ in \mathbb{N} satisfying the above axiom.

From now on \mathbb{N} is assumed to interpret $\left\lfloor\frac{x}{2}\right\rfloor$, as well.
As a second step, we add a unary function symbol $|x|$ together with the following axioms

- $|0|=0$
- $|1|=1$
- $\forall x, y(x \leq y \rightarrow|x| \leq|y|)$
- $\forall x(x \neq 0 \rightarrow(|2 \cdot x|=|x|+1 \wedge|2 \cdot x+1|=|x|+1))$
- $\forall x\left(x \neq 0 \rightarrow|x|=\left|\left\lfloor\frac{x}{2}\right\rfloor\right|+1\right)$

Exercise 2. Show that there is a unique interpretation of $|x|$ in \mathbb{N} satisfying the above axioms.

From now on \mathbb{N} is assumed to interpret $|x|$, as well.
Finally, we add a binary function symbol $x \# y$ with the following axioms

- $\forall x(0 \# x=1)$
- $\forall x, y(x \# y=y \# x)$
- $\forall x(1 \#(2 \cdot x)=2 \cdot(1 \# x) \wedge 1 \#(2 \cdot x+1)=2 \cdot(1 \# x))$
- $\forall x, y(|x \# y|=|x| \cdot|y|+1)$
- $\forall x, y, z(|x|=|y| \rightarrow x \# z=y \# z)$
- $\forall x, y, z, w(|x|=|y|+|z| \rightarrow x \# w=(y \# w) \cdot(z \# w))$

Exercise 3. Show that there is a unique interpretation of $x \# y$ in \mathbb{N} satisfying the above axioms.

The motivation behind $x \# y$ is the following simple but very important observation.

Exercise 4. Let x, y be numbers representing binary strings in the standard way. Then, the bit-length of y is poly-size bounded in the bit-length of x if and only if y as a number is bounded by a term resulting from applying $\#$ to x iteratively.

Concretely

$$
|y| \leq|x|^{c} \Longleftrightarrow y \leq x \# \cdots \# x
$$

with c a fixed constant and \# applied exactly c-times.
From now on \mathbb{N} is assumed to interpret $x \# y$, as well.
Remark 5. * It is possible to solve Exercises 1 and 2 with \mathbb{N} being replaced by an arbitrary $I \Delta_{0}$ model \mathbb{M}.

Exercise 3 is a bit tricky. First of all one needs to be sure that the operation $x \# y$ is even definable by a Δ_{0}-formula. This is true, although not trivial, i.e. there is a Δ_{0}-formula $\varphi(x, y, z)$ so that in $\mathbb{N} \forall x, y, z(x \# y=z \leftrightarrow \varphi(x, y, z))$.

By choosing $\varphi(x, y, z)$ well enough, one can show that $I \Delta_{0}$ does indeed prove the uniqueness of the interpretation of $x \# y$.

However, $I \Delta_{0}$ is not able to prove $\forall x, y \exists z \varphi(x, y, z)$ and so there exist models of $I \Delta_{0}$ where $x \# y$ can only be interpreted as a partial operation.

The language $L_{P A}$ with newly introduced symbols is denoted as $L_{S_{2}}$ and the corresponding theory is called $B A S I C$.

The notion of a bounded $L_{S_{2}}$-formula is defined in the same way as before and so we can overload Δ_{0}. Finally, the overloaded $I \Delta_{0}$ is denoted as S_{2}.

Remark 6. * The number 2 in S_{2} indicates the presence of \# in the language. The theory without such a symbol is called S_{1}, while at the same time, it is possible to iteratively define $\#_{k}$ symbols (the usual $\#$ here is $\#_{2}$). Such operations are all super-polynomial (quasi-polynomial and faster) but are still not as fast as the exponential function.

Fact 7. Theorem of Parikh still applies in the current context, i.e. for any Δ_{0}-formula $\varphi(x, y)$

$$
S_{2} \vdash \forall x \exists y \varphi(x, y) \Longrightarrow S_{2} \vdash \forall x \exists y \leq t(x) \varphi(x, y),
$$

with $t(x)$ - an $L_{S_{2}}$-term, i.e. a quasi-polynomial.
Exercise 8. What kind of deterministic/non-deterministic witnessing do we get for the theory S_{2} and Δ_{0}-definable total relation $P(x, y)$? Compare it to the witnessing for $I \Delta_{0}$.

