
Propositional proof systems

Definition 1. A propositional formula φ(x1, . . . , xn) is a tautology if it obtains
the value 1 under any assignment of its variables.

Exercise 2. Give an example of a tautology!

Definition 3 (Cook-Reckhow). A propositional proof system P is a relation
between propositional formulas and binary strings, such that

φ is a tautology ⇐⇒ ∃π : P (φ, π),

and P (φ, π) can be checked in polynomial time.

Definition 4. The propositional proof system LK (or Sequent Calculus) is the
system whose proofs operate on sequents which are expressions of the form

A1, . . . , An −→ B1, . . . , Bm,

where Ai’s and Bi’s are formulas, which is interpreted the same as the formula∨
i

¬Ai ∨
∨
i

Bi.

A valid proof in LK is a list of sequents π = (S1, . . . , Sk) such that each
sequent Si is obtained as one of the initial sequents or from the previous sequents
by one of the following rules:

• Intial sequents: 0 −→, −→ 1, p −→ p, where p is a propositional
variable.

• Structural rules:

– the weakening rules

Γ −→ ∆

A,Γ −→ ∆
and

Γ −→ ∆

Γ −→ ∆, A
,

– the exchange rules

Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
and

Γ −→ ∆1, A,B,∆2

Γ −→ ∆1, B,A,∆2
,

– the contraction rules

Γ1, A,A,Γ2 −→ ∆

Γ1, A,Γ2 −→ ∆
and

Γ −→ ∆1, A,A,∆2

Γ −→ ∆1, A,∆2
,

• Logical rules:

– (¬)-introduction rules:

Γ −→ ∆, A

¬A,Γ −→ ∆
and

A,Γ −→ ∆

Γ −→ ∆,¬A
,
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– (
∧
)-introduction rules

Γ −→ ∆, A1 . . . Γ −→ ∆, An

Γ −→ ∆,
∧

i Ai
and

Γ, A1, . . . , An −→ ∆

Γ,
∧

i Ai −→ ∆
,

– (
∨
)-introduction rules

Γ, A1 −→ ∆ . . . Γ, An −→ ∆

Γ,
∨

i Ai −→ ∆
and

Γ −→ ∆, A1, . . . , An

Γ −→ ∆,
∨

i Ai
,

• The cut rule:
Γ −→ ∆, A A,Γ → ∆

Γ → ∆
.

Exercise 5. Prove −→ ¬(p ∧ ¬p) in LK.

Fact 6. The system LK is complete, it proves all tautologies.

Definition 7. A depth of a formula in an LK-proof is defined as follows:
Propositional variables and constants have the depth 0, and

depth(
∧

(A1, . . . , Ar)) = 1 +max
i

(depth(Ai)),

depth(
∨

(A1, . . . , Ar)) = 1 +max
i

(depth(Ai)).

A system LKd, or depth d sequent calculus, is a subsystem of LK allowing only
formulas of depth at most d.

Exercise 8 (*). The system LKd proves all depth d tautologies.

Definition 9. The system ELK, or extended sequent calculus, is defined as
LK, except is allows for any formula A to add the initial sequents (‘extension
sequents’)

q −→ A A −→ q,

where q is a propositional variable, called the extension variable, which was not
used as an extension variable for another formula and does not appear in A.

Fact 10. For each d ≥ 0, we have LKd ≤p LK ≤p ELK, where P ≤p Q
means that proofs of P can be transformed to proofs of Q without more than
polynomial each in size.

Theorem 11 (Ajtai, early 1980’s, first published 1988). For each d ≥ 2, the
system LKd does not have polynomial size proofs of the formula PHPn.

Theorem 12 (Buss, 1987). The system LK does have a polynomial size proofs
of PHPn.

Remark 13. The system LKd, for any fixed d, is equivalent to a system called
bounded-depth Frege (AC0-Frege), the system LK is equivalent to a system
called Frege (F ), and ELK is equivalent to a system called extended Frege
(EF ).
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Bounded arithmetic, propositional translations and
Ajtai’s argument

Definition 14. We say an LPA formula φ is bounded if every quantifier is of
the form (∃x ≤ t(y))(. . . ) or (∃x) ≤ s(y) and y. The set of all bounded formulas
is denoted ∆0.

Definition 15. Let R be a binary relational symbol and LPA(R) = LPA(R).
The theory I∆0(R) consists of Q and induction for all formulas in ∆0(R), the
bounded LPA(R).

Exercise 16. Show that

I∆0(R) ⊢ R(c, c) → (∃b ≤ c)(R(b, b) ∧ (∀a < b)(¬R(a, a))),

or ‘If R(x, x) is non-empty, it has a smallest element.’

Definition 17 (Paris-Wilkie translation). Let θ(a1, . . . , ak) ∈ ∆0(R) and let
pij be a propositional variable for each i, j ∈ N. For (n1, . . . , nk) ∈ Nk we define
a propositional formula ⟨θ⟩(n1,...,nk) by induction on the logical depth:

1. if θ is an atomic formula s(n) = t(n) or s(n) ≤ t(n), then

⟨θ⟩n =

{
1 θ(n) is true

0 otherwise.

2. if θ is an atomic formula R(s(n), t(n)), then

⟨θ⟩n = ps(n),t(n)

3. ⟨−⟩n commutes with ∧, ∨, ¬

4. if θ(a) is of the form (∀x ≤ t(a))θ0(a, x), then

⟨θ⟩n =
∧

m≤t(n)

⟨θ0⟩(n,m)

5. if θ(a) is of the form (∃x ≤ t(a))θ0(a, x), then

⟨θ⟩n =
∨

m≤t(n)

⟨θ0⟩(n,m).

Note that for a fixed θ and all n the size of ⟨θ⟩n is polynomial in n and the
depth is constant.

Theorem 18. Assume that θ(x) ∈ ∆0(R) and that

I∆0(R) ⊢ (∀x)θ(x),

then there is a number d such that

LKd ⊢poly(n) ⟨θ⟩n.
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Fact 19. Let F , P be binary relations and E unary. There are ∆0(E,F, P )
formulas

• Flad(F ) formalizing that F denotes a depth d DeMorgan formula,

• Prfd(P, F ) formalizing that P is a valid LKd proof of F which satisfies
Flad(F ),

• Satd(E,F ) formalizing that E is a satisfying assignment to F ,

• Refd(E,F, P ) ≡ (Prfd(P, F ) → Satd(E,F )), the formalization of the
reflection principle for LKd.

Then for every d, we have

I∆0(E,F, P ) ⊢ Refd(E,F, P ).

Definition 20. Let M be a non-standard model of true arithmetic, and let
n ∈ M \ N. Then nN = {i ∈ M ; i < nk; k ∈ N}.
Theorem 21 (Ajtai’s argument). Let θ(x) ∈ ∆0(R), let M be a non-standard
model of true arithmetic, let n ∈ M \ N. Let τ be a set of relational symbols
containing R, and let every R′ ∈ τ \ {R} be interpreted by a relation (R′)α

coded in M . If there is an interpretation of R, denoted Rα, such that

• (nN, τα) |= I∆0(τ)

• (nN, τα) |= ¬θ(n),
then ⟨θ⟩n does not have polynomial size proofs in LKd.

Theorem 22 (Ajtai). For every non-standard model of true arithmetic M , a
non-standard n ∈ M , and τ containing R, where each R′ ∈ τ \{R} is interpreted
by elements of M as (R′)α there is a relation Rα such that

• (nN, τα) |= I∆0(τ)

• (nN, τα) |= ¬PHP (n).

Exercise 23. Prove Theorem 11.

Remark 24. The theory I∆0(τ) is a bit cumbersome to work with as the
objects of our interest, the relations in τ , are not part of the model-theoretic
universe. This can be fixed by introducing the theory V 0

1 , which is two-sorted
(sometimes called ‘second order’): it has sorts for numbers and sets of numbers.

For every θ ∈ ∆0(R) we have

I∆0(R) ⊢ θ(R) ⇐⇒ V 0
1 ⊢ (∀X)θ(X),

the theory V 0
1 contains a few axioms about the sets of numbers, bounded

induction without set quantification and comprehension axiom which says that
any set definable by a bounded formula without set quantification exists.

A stronger theory V 1
1 , which allows comprehension for formulas existentially

quantifying sets, then corresponds to polynomial size proofs of ELK in the same
way V 0

1 (or I∆0(R)) corresponds to polynomial size proofs of (all) LKd. There
is also a theory V NC1 which corresponds to polynomial size proofs of LK.
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