Sequent calculus LK

Propositional sequent calculus

Definition 1. Let A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{m} be propositional formulas. A sequent is a symbol of the form

$$
A_{1}, \ldots, A_{n} \longrightarrow B_{1}, \ldots, B_{m}
$$

The semantics for a sequent are the same as for the formula

$$
\bigwedge_{i} A_{i} \rightarrow \bigvee_{i} B_{i}
$$

which is semantically equivalent to

$$
\bigvee_{i} \neg A_{i} \vee \bigvee_{i} B_{i}
$$

Definition 2. The Sequent calculus is a propositional proof system (which proves sequents), whose proves are given as follows.

A proof of a sequent S is a sequence of sequents, S_{1}, \ldots, S_{k}, where $S_{k}=S$ and each S_{i} is either an initial sequent

$$
x \longrightarrow x,
$$

where x is a propositional variable or was derived from $S_{j}, S_{l}, 1 \leq j \leq l \leq$ by one of the following rules.

Weak Structural Rules

$$
\begin{aligned}
\text { (Exchange:L) } \frac{\Gamma, A, B, \Pi \longrightarrow \Delta}{\Gamma, B, A, \Pi \longrightarrow \Delta} & \text { (Exchange:R) } \frac{\Gamma \longrightarrow \Delta, A, B, \Lambda}{\Gamma \longrightarrow \Delta, B, A, \Lambda} \\
\text { (Contraction:L) } \frac{\Gamma, A, A, \Pi \longrightarrow \Delta}{\Gamma, A, \Pi \longrightarrow \Delta} & \text { (Contraction:R) } \frac{\Gamma \longrightarrow \Delta, A, A, \Lambda}{\Gamma \longrightarrow \Delta, A, \Lambda} \\
\text { (Weakening:L) } \frac{\Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta} & \text { (Weakening:R) } \frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, A}
\end{aligned}
$$

The Cut Rule

$$
(\mathrm{Cut}) \frac{\Gamma \longrightarrow \Delta, A \quad \Gamma, A \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}
$$

The Propositional Rules

$$
\begin{aligned}
(\neg: \mathrm{L}) \frac{\Gamma \longrightarrow \Delta, A}{\Gamma, \neg A \longrightarrow \Delta} & (\neg: \mathrm{R}) \frac{\Gamma, A \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \neg A} \\
(\vee: \mathrm{L}) \frac{\Gamma, A \longrightarrow \Delta}{\Gamma, \mathrm{~L}) \frac{\Gamma, A, B \longrightarrow \Delta}{\Gamma, A \wedge B \longrightarrow \Delta}} & (\wedge: \mathrm{R}) \frac{\Gamma \longrightarrow \Delta, A}{\Gamma, A \vee B \longrightarrow \Delta \longrightarrow \Delta, B} \\
(\mathrm{\Gamma}, B \longrightarrow \Delta & (\vee \mathrm{R}) \frac{\Gamma \longrightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \vee B}
\end{aligned}
$$

Sequent calculus is denoted $L K$ (for Logischer Kalkülus) or $P K$ for the propositional version.

Fact 3. $L K \equiv_{p} F$
Definition 4. $L K^{-}$is the subsystem of $L K$, which forbids the use of the cut rule.

Exercise 5. Prove $L K^{-} \vdash \longrightarrow A \vee \neg A$
Exercise 6. Prove $L K^{-} \vdash \longrightarrow(A \vee \neg A) \wedge(B \vee \neg B)$
Exercise 7. Prove $L K^{-} \vdash \longrightarrow(A \wedge B) \vee(A \wedge \neg B) \vee(A \wedge \neg B) \vee(\neg A \wedge \neg B)$
Exercise 8. Prove $L K^{-}$is complete.

First order sequent calculus

Definition 9. Let L be a first order language. The first order sequent calculus, also labeled $L K$, is a first order proof system, which is an extension of the propositional $L K$ where we replace the propositional variables by atomic L formulas.

The additional rules are Quantifier Rules

$$
\begin{array}{ll}
(\forall: \mathrm{L}) \frac{\Gamma, A(t) \longrightarrow \Delta}{\Gamma,(\forall x) A(x) \longrightarrow \Delta} & (\forall: \mathrm{R}) \frac{\Gamma \longrightarrow \Delta, A(b)}{\Gamma \longrightarrow \Delta,(\forall x) A(x)} \\
(\exists: \mathrm{L}) \frac{\Gamma, A(b) \longrightarrow \Delta}{\Gamma,(\exists x) A(x) \longrightarrow \Delta} & (\exists: \mathrm{R}) \frac{\Gamma \longrightarrow \Delta, A(b)}{\Gamma \longrightarrow \Delta,(\exists x) A(x)}
\end{array}
$$

where Γ and Δ are sequences of formulas, t is an arbitrary term, b is a free variable which does not occur in neither Γ nor Δ, b is called the eigenvariable of the rule.

Note that $L K$ has no built-in axioms for equality, they have to be added as a part of the studied theory.

Exercise 10. Prove that if $L K \vdash \Gamma \longrightarrow \Delta$ without the cut rule, then every sequent in this proofs contains only formulas which are subformulas of the formulas in Γ or Δ.

Theorem 11. (Cut-free completeness) If a theory T semantically implies

$$
\Gamma \longrightarrow \Delta,
$$

then there are $A_{1}, \ldots, A_{n} \in T$ such that there is a cut free proof of

$$
A_{1}, \ldots, A_{n}, \Gamma \longrightarrow \Delta
$$

Exercise 12. If the axioms of groups (including the axioms of equality) prove $\longrightarrow t=s$, where t and s are some group terms, then there is an $L K$-proof of this equality, where every formula in every sequent is

