
Theorem of Paris and Wilkie

We consider N as a first order structure over the language LPA containing
basic arithmetic symbols: 0, 1,+, · and ≤. Denote T as all LPA-sentences (i.e.
formulas without free variables) true in N.

We augment LPA by a single unspecified binary relation symbol R (resulting
language is denoted as L(R)).

Exercise 1. Express formally the statement “if R is the graph of a function with
domain [0, . . . , n] and range [0, . . . , n− 1], then the function is not injective”.

The above expression is known as the (injective) pigeonhole principle (for n)
and is denoted as PHPn+1

n (R). Denote PHP(R) as ∀n PHPn+1
n (R).

Note that PHP(R) holds no matter the interpretation of R in N.

Exercise 2. Show that PHP(R) is not provable in T (i.e. no specific axioms
regarding R are given). The simplest way to prove this is to construct a model.
Notice, however, that you cannot simply interpret R suitably in N.

One possible solution to the above exercise is to first pick a non-standard
model M of T , then pick a non-standard number n, and define R as a graph of
the function mapping [0, . . . , n] to [0, . . . , n−1] such that each standard number
is mapped to itself, while non-standard numbers are shifted by one.

While the above is a viable solution, the model constructed is not extremely
useful, since it does not satisfy induction for formulas involving R.

Exercise 3. Give an example of an L(R)-formula φ(x) violating the principle
of induction. In other words, there must be a number m so that

• φ(0)

• ¬φ(m)

• ∀p < m φ(p) → φ(p+ 1)

all hold true in M for R as above.
Try to come up with as simple a formula, as possible.

Exercise 4. A particular solution to the above exercise is just φ(x) := R(x, x).
For such a formula, try to redefine R so that the corresponding function is

still an injective mapping from [0, . . . , n] to [0, . . . , n − 1], while the induction
principle for the formula above holds true (for any value of m).

Exercise 5. ** Show that it is not possible to define R violating PHP(R) while
at the same time satisfying induction for all L(R)-formulas simultaneously.

The goal for today is to prove the following

Theorem 6 (Paris, J. and Wilkie, A.). It is possible to define R violating
PHP(R) while at the same time satisfying induction for existential formulas,
i.e. formulas φ(x) of the form ∃y1, . . . ,∃yk ψ(y1, . . . , yk, x) with ψ a quantifier-
free L(R)-formula (φ(x) may contain free variables).
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We start with a countable non-standard model M of T . Let n be a non-
standard number. Denote an interval [0, . . . ,m] as [m].

We build R iteratively. At each step, we are given some finite relation
σ ⊂ [n] × [n − 1] defining the graph of a partial injective function. We then
extend it to a finite τ ⊇ σ which is the graph of a partial injection, as well.

How exactly we extend depends on which step of the construction we currently
are at. In our case, we discriminate between odd and even steps.

Exercise 7. Explain a way to take action at each even step so that, no matter
what happens at any odd step, the limit R is the graph of an injective function
from [n] to [n− 1] (in fact, you can easily make it be a bijection).

One can then say, that the ¬PHPn+1
n (R) is forced (by the above construction

and specification of actions at even steps). We can go further and actually define
forcing as follows: for a σ as above and an L(R)-sentence φ, say σ forces φ if, no
matter how the construction proceeds, assuming the limit R extends σ implies
the resulting interpretation satisfies φ.

The above exercise can then be solved as follows. First note that any σ forces
R to be the graph of an injective partial function (i.e. no pigeon is mapped to
more than one hole and no hole is occupied by more than one pigeon). The
totality of such function is not forced by any condition. However, given an
arbitrary p ∈ [n] and σ, it is always possible to extend σ to τ so that τ is now
defined for p. This makes a property of being definable on a particular p to be
dense.

By specifying the even steps of the construction, we are using such density
to ensure the totality of the resulting function. Note that we can make sure
that any particular dense property is being satisfied by the limit R (and also
countably many of them simultaneously) by the exact same argument.
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