Width lower-bounds for Resolution proof system

Why do we care about width lower bounds

The width lower bounds for resolution are important because due to the
following theorem, we can transform the width lower bound into a size lower
bound.

Theorem 1 (Ben-Sasson, Wigderson). For all k and k — CNF F the following
holds:

L. w(FF0) <k+log(Sires(F F0))

2. w(FF0)<k+0O (\/nlog(SRes(]: = 0)))

Proof strategy

All lower bounds on width follow the same strategy:

1. Define a complexity measure p: {Clauses} — N such that p(Aziom) <1

2. Prove p(0) is large.
3. Infer that in any refutation there is some clause C' with medium size p(C').
4. Prove that if 4(C) is medium then w(C) is large.

We shall now formalize and explain this strategy. First, we will define a measure
that will satisfy condition 1.-3.

Definition 2 (p4). For f a boolean function, let Vars(f) denote the set of
variables appearing in f. Let o € {0, 1}V‘”5(f) be an assignment to f. We say
that « satisfies f, if f(a) = 1. For C a clause and I" a set of boolean functions,
let V= Vars(f)UVars(C). We say that T implies C, denoted by T' = C, if
every assignment satisfying every function v € I" satisfies C' as well.

Let A be an unsatisfiable set of boolean functions, i.e. A = 0, and let C
be a clause. We define p4(C) := min{|A’|; A’ C A, A" = C}.

. is a sub-additive complexity measure with respect to resolution steps:

Exercise 3. Suppose D was inferred from B,C by a single resolution step.
Then for any set of boolean functions A: u4(D) < pa(B) + pa(C).

In order to assure condition 1 of the strategy, we want p(Axiom) to be small:

Definition 4 (Compatibility). For F a non-satisfiable CNF we say that A is
compatible with F if A =0 and VC € F p(C) < 1.



We always pick a compatible A and use it to define © = p 4. Note that
part 2 of the strategy puts another requirements on A, namely that no “small”
subset of it is contradictory. However, this would be intuitively easy to achieve
with “hard” tautologies.

We now claim that part 3 can be deduced from the definitions:

Exercise 5. If A is compatible with F then in every refutation of F there must
be a clause C' with u(0)/3 < u(C) < 2u(0)/3.

Definition 6. A boolean function f is called Sensitive if any two distinct
falsifying assignments o, 3 € f~1(0), have Hamming distance greater than 1.
An example of a Sensitive function is PARITY.

For A a set of boolean functions, and f € A, a Critical Assignment for f is
g=1r

1 g#f,geA

For «, 8 € {0, 1}V‘“'5(A), we say that [ is the result of flipping « on the variable

. i Bly) = {1_0‘(” e

a(y) otherwise

an assignments a € {0,1}V975(A) such that g(a) =

We shall now define the expansion of a CNF formula in terms of its minimal
boundary:

Definition 7 (Boundary). For f a boolean function and x a variable, we say
that f is dependent on z if there is some assignment « such that f(«) =0, but
flipping « on x satisfies f.

For A a set of boolean functions, the Boundary of A, denoted d.A, is the set of
variables  such that there is a unique function f € A that is dependent on =x.

Exercise 8 (Sanity check). Check that a critical assignment to a sensitive
function can be changed to a satisfying assignment, by flipping a boundary
variable. Formally:

If f € A is Sensitive, « is a Critical Assignment for f, and = € Vars(f) N9A
then flipping « on z yields an assignment S that satisfies A.

We define the expansion of F to be the minimal boundary of a medium size
sub-formula of A:

Definition 9 (Expansion). For A |= 0, let k = pa()). We define the Expansion
of A to be:

e(A) ;== min{|0A'[; A’ C A, 1/3 -k <|A'| <2/3-k}.

The main tool, used in proving most lower bounds on width, presents the
connection between width and expansion:



Theorem 10. For F an unsatisfiable CNF"
w(F + 0) > max e(A),

where the maximum is taken over all sets A of sensitive functions, compatible
with F.

Proof. Fix some A that is compatible with F, and let u4(@) = k. By Exercise
5 there must exist some clause C such that k/3 < pa(C) < 2k/3. Let A’ C A
be a minimal set such that A" = C. We claim that any variable € 9.A" must
appear in C. To see this, notice that for every f € A’ there is some assignment
ay such that ay(C) = ay(f) = 0 and ar(g) = 1 for all g € A,g # f. This
follows from the minimality of A’, for otherwise A’ \ f = C. Suppose, for the
sake of contradiction, that € dA'NVars(f) but z ¢ C. By Exercise 8, flipping
ay on x satisfies A’, but the new assignment agrees with oy on Vars(C'). Hence
A’ [£ C, contradiction. O

Main results for Tseitin formulas and PHP

Definition 11 (T'SE¢ ). Let G = ([n], E) be an undirected graph. Let
f:[n] = {0,1} be a function assigning to each vertex 0 or 1. Consider the
set of equations in Fo in the variables x., where e = {i,j} are the edges from

E:
@ z;; = f(i), for each i € [n].
j{ijreRE

TSEq,y is a formula saying that these equations hold together.

Exercise 12 (T'SE¢ ¢). Assuming d is a maximum degree of G, write T'SEq ¢
as d-CNF and give an upper bound on number of clauses and number of
variables.

Fact 13. Assume »  f(i) =1 in F,. Then T'SEg, s is unsatisfiable.
i€[n]

Definition 14 (Expansion for graphs). For G a finite connected graph, the
Expansion of G is

e(G) =min{|[E(V, V\V'); V' CV,|V|/3 <|V'| <2|V]|/3}.

Theorem 15. For G a finite, connected, undirected graph and f an odd-weight
function on V(G), w(T'SEg s F 0) > e(G).

Proof. For v € V(G), we define PARITY, := @ Ze = f(v) | where
vEe,e€ R

the equations are over Fo. Set Ay = {PARITY,;v € V(G)} and denote

w(C) = pa, (C). Every axiom C is one of the defining axioms of PARITY,,.

Clearly, for this very same v, PARITY, = C'. Hence for any axiom C, u(C) = 1.



So far we have shown that Ay is compatible for TSEq y. Next, we claim that
(@) = |V(G)|, because for any |V’'| < |V(G)|, Ay~ is satisfiable. This latter
claim is seen by the following reasoning: Let v be some vertex in V' \ V'. Look
1—fu) wv=vw

f(u) otherwise

By Fact 13, T'SE¢q ¢ is satisfiable. Ay is a sub-formula of T'SE¢g ¢, and
hence satisfiable as well. Ay (g is a collection of PARITY functions which
are Sensitive. Finally, for V! C V, 0Ay: = {z.;e € E(V', V' \V’)}. This is true
because if e = {v,u},v € V',u € V' \ V' then PARITY, is the only function
in Ay dependent on z.. Hence e(Ay) > e(G) and we apply Theorem 9 to
complete the proof. O

at the formula TSEq ¢ for f'(u) = {

Corollary 16. For G a 3-regular connected expander (i.e. e(G) = Q(|V]))n
and f an odd-weight function on V(G), S(TSEg, ;) = 2%(T5Fa.sD),

Definition 17 (Our version of PHP). The pigeonhole principle PHP},_; is the
CNF formula over variables z;; with 1 <4 <n, 1 < j <n — 1 consisting of:

e Pigeon axioms:
n—1
j=1
asserting that each pigeon goes to some hole.
e Hole axioms:
iy V iy (i1 # i2),
asserting that no two pigeons occupy the same hole.

Clearly PHP; _, is unsatisfiable, since no injective function [n] — [n — 1]
exists.

Theorem 18. There is a constant ¢ > 1 such that any resolution refutation of
PHP; _, requires size ¢".

Proof. Here we call a truth assignment « i-critical if it falsifies exactly the
pigeon axiom P;. It is critical if it is i-critical for some i.
Given a clause C, let C(a) denote its truth value under a.

Claim 1. Let C be any clause and C™ the clause obtained by replacing every
negated literal —x;; by the subclause X;; = \/i/# xy5. Then for any critical
assignment o we have C* () = C(«).

Exercise 19. Prove Claim 1.

Claim 2. Every resolution refutation of PHP],_; must contain a clause where
the width of C'* satisfie w(CT) > 2n?/9.

Proof of Claim 2. Given a clause C' let Pigeon(C) C [n] be the set of pigeons
where there is some i-crirical assignment « for which C(«a) = 0. Let pu(C) =
|Pigeon(C)|. We observe that



1. u(P;) =1 for each pigeon axiom P;,
2. u(0) = n since every assignment falsifies (),

3. if clause C' was derived from clauses A, B using the one resolution step
then u(C) < u(A) + p(B). This is because every assignment falsifying C
must falsify A or B.

Therefore, we can conclude from the conditions above that if R was a resolution
refutation of PHP) _; there is some clause C' in R where n/3 < u(C) < 2n/3.
Now we want to argue that for that clause C, we have w(CT) > 2n2/9.

Fix i € Pigeon(C) and some j ¢ Pigeon(C) so that « is an i-critical assignment
that falsifies C. Without loss of generality, assume that « sent a pigeon j to
a hole k. By flipping o on z;; and x;; we obtain a j-critical assignment c’.
Furthermore, C'(a) = C*(a) = 0 and C(«’) = C*(a’) = 1 by construction and
the previous claim. Therefore, since C* contains only positive literals and only
variable whose truth value was switched from 0 to 1 is x;x, we conclude that
C* must contain x;j.

Repeating the argument for all pairs (¢,7) such that i € Pigeon(C) and j ¢
Pigeon(C), and since all pairs must yield a distinct variable in C*, we can
conclude that the width of CT is at least s(n — s) where s = |Pigeon(C)|. By
assumption that n/3 < |Pigeon(C)| < 2n/3, we get that w(C*) >2n2/9. O

Now we will use that width lower bound to get the size lower bound. We
let R be a resolution refutation of PHP]'_; and let RT be the positive version
where each clause C € R is replaced by its positive version C*. Let ¢ > 0 be a
constant whose exact value we will choose later.

Definition 20. A clause in R* is e-wide if its width satisfies w(CT) > en?.

Let S be the number of wide clauses in the refutation Rt. We can conclude
that there is some variable x;; appearing in at least ¢S wide clauses. by counting
the number of variables in wide clauses. Therefore, we can define a restriction
that sets z;; = 1, all z;7; = 0 for ' # 4, and all z;;; = 0 for j' # j.

Notice that once we apply the restriction to R (and hence to RT), R is now a
resolution refutation of PHP” 2 and there are now at most (1—¢)S wide clauses
in R*. Therefore, we can inductively apply k restrictions for k = In(S)/e so
that we get a proof of PHPZ:Zﬁ1 where the positive version R contains no wide
clauses since there are at most S(1—e¢)* wide clauses and S(1—¢)¥ < Se=* <1
by the choice of € and k.

However, from the previous claim, we know that in any refutation of PHPZ:Z_1
there is some clause C' where w(CT) > 2(n — k)2/9 but on the other hand, we



have produced a refutation of PH Pg:,f_l with no wide clauses by restricting
the proof of PHP]._,. Therefore, the inequality

2 _ 2 2 _ ln(S)
(ng k) = (n 5 =) <w(CT) < en?

must be satisfied. After some algebra, we can conclude that in(S) > en—e/%£n,

so picking € = 8/81 to maximize the bound means that the resolution refutation
of PHP],_; must contain at least

8
S > exp (247;> > 1.033"

wide clauses, which finishes the proof. O



