
Width lower-bounds for Resolution proof system

Why do we care about width lower bounds

The width lower bounds for resolution are important because due to the
following theorem, we can transform the width lower bound into a size lower
bound.

Theorem 1 (Ben-Sasson, Wigderson). For all k and k −CNF F the following
holds:

1. w(F ⊢ 0) ≤ k + log (StRes(F ⊢ 0))

2. w(F ⊢ 0) ≤ k +O
(√

nlog(SRes(F ⊢ 0))
)
.

Proof strategy

All lower bounds on width follow the same strategy:

1. Define a complexity measure µ : {Clauses} → N such that µ(Axiom) ≤ 1.

2. Prove µ(∅) is large.

3. Infer that in any refutation there is some clause C with medium size µ(C).

4. Prove that if µ(C) is medium then w(C) is large.

We shall now formalize and explain this strategy. First, we will define a measure
that will satisfy condition 1.-3.

Definition 2 (µA). For f a boolean function, let V ars(f) denote the set of
variables appearing in f . Let α ∈ {0, 1}V ars(f) be an assignment to f . We say
that α satisfies f , if f(α) = 1. For C a clause and Γ a set of boolean functions,
let V = V ars(f) ∪ V ars(C). We say that Γ implies C, denoted by Γ |= C, if
every assignment satisfying every function γ ∈ Γ satisfies C as well.

Let A be an unsatisfiable set of boolean functions, i.e. A |= 0, and let C
be a clause. We define µA(C) := min{|A′|;A′ ⊆ A,A′ |= C}.

µA is a sub-additive complexity measure with respect to resolution steps:

Exercise 3. Suppose D was inferred from B,C by a single resolution step.
Then for any set of boolean functions A: µA(D) ≤ µA(B) + µA(C).

In order to assure condition 1 of the strategy, we want µ(Axiom) to be small:

Definition 4 (Compatibility). For F a non-satisfiable CNF we say that A is
compatible with F if A |= 0 and ∀C ∈ F µ(C) ≤ 1.
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We always pick a compatible A and use it to define µ = µA. Note that
part 2 of the strategy puts another requirements on A, namely that no “small”
subset of it is contradictory. However, this would be intuitively easy to achieve
with “hard” tautologies.

We now claim that part 3 can be deduced from the definitions:

Exercise 5. If A is compatible with F then in every refutation of F there must
be a clause C with µ(∅)/3 ≤ µ(C) ≤ 2µ(∅)/3.

Definition 6. A boolean function f is called Sensitive if any two distinct
falsifying assignments α, β ∈ f−1(0), have Hamming distance greater than 1.
An example of a Sensitive function is PARITY.

For A a set of boolean functions, and f ∈ A, a Critical Assignment for f is

an assignments α ∈ {0, 1}V ars(A) such that g(α) =

{
0 g = f

1 g ̸= f, g ∈ A

For α, β ∈ {0, 1}V ars(A), we say that β is the result of flipping α on the variable

x, if β(y) =

{
1− α(y) y = x

α(y) otherwise

We shall now define the expansion of a CNF formula in terms of its minimal
boundary:

Definition 7 (Boundary). For f a boolean function and x a variable, we say
that f is dependent on x if there is some assignment α such that f(α) = 0, but
flipping α on x satisfies f .

For A a set of boolean functions, the Boundary of A, denoted ∂A, is the set of
variables x such that there is a unique function f ∈ A that is dependent on x.

Exercise 8 (Sanity check). Check that a critical assignment to a sensitive
function can be changed to a satisfying assignment, by flipping a boundary
variable. Formally:
If f ∈ A is Sensitive, α is a Critical Assignment for f , and x ∈ V ars(f) ∩ ∂A
then flipping α on x yields an assignment β that satisfies A.

We define the expansion of F to be the minimal boundary of a medium size
sub-formula of A:

Definition 9 (Expansion). For A |= 0, let k = µA(∅). We define the Expansion
of A to be:

e(A) := min{|∂A′|;A′ ⊆ A, 1/3 · k ≤ |A′| ≤ 2/3 · k}.

The main tool, used in proving most lower bounds on width, presents the
connection between width and expansion:
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Theorem 10. For F an unsatisfiable CNF:

w(F ⊢ 0) ≥ max e(A),

where the maximum is taken over all sets A of sensitive functions, compatible
with F .

Proof. Fix some A that is compatible with F , and let µA(∅) = k. By Exercise
5 there must exist some clause C such that k/3 ≤ µA(C) ≤ 2k/3. Let A′ ⊂ A
be a minimal set such that A′ |= C. We claim that any variable x ∈ ∂A′ must
appear in C. To see this, notice that for every f ∈ A′ there is some assignment
αf such that αf (C) = αf (f) = 0 and αf (g) = 1 for all g ∈ A, g ̸= f . This
follows from the minimality of A′, for otherwise A′ \ f |= C. Suppose, for the
sake of contradiction, that x ∈ ∂A′∩V ars(f) but x /∈ C. By Exercise 8, flipping
αf on x satisfies A′, but the new assignment agrees with αf on V ars(C). Hence
A′ ̸|= C, contradiction.

Main results for Tseitin formulas and PHP

Definition 11 (TSEG,f ). Let G = ([n], E) be an undirected graph. Let
f : [n] → {0, 1} be a function assigning to each vertex 0 or 1. Consider the
set of equations in F2 in the variables xe, where e = {i, j} are the edges from
E: ⊕

j:{i,j}∈E

xi,j = f(i), for each i ∈ [n].

TSEG,f is a formula saying that these equations hold together.

Exercise 12 (TSEG,f ). Assuming d is a maximum degree of G, write TSEG,f

as d-CNF and give an upper bound on number of clauses and number of
variables.

Fact 13. Assume
∑
i∈[n]

f(i) = 1 in F2. Then TSEG,f is unsatisfiable.

Definition 14 (Expansion for graphs). For G a finite connected graph, the
Expansion of G is

e(G) := min{|E(V ′, V \ V ′)|;V ′ ⊆ V, |V |/3 ≤ |V ′| ≤ 2|V |/3}.

Theorem 15. For G a finite, connected, undirected graph and f an odd-weight
function on V (G), w(TSEG,f ⊢ 0) ≥ e(G).

Proof. For v ∈ V (G), we define PARITYv :=

 ⊕
v∈e,e∈E

xe = f(v)

 where

the equations are over F2. Set AV = {PARITYv; v ∈ V (G)} and denote
µ(C) = µAV

(C). Every axiom C is one of the defining axioms of PARITYv.
Clearly, for this very same v, PARITYv |= C. Hence for any axiom C, µ(C) = 1.
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So far we have shown that AV is compatible for TSEG,f . Next, we claim that
µ(∅) = |V (G)|, because for any |V ′| < |V (G)|, AV ′ is satisfiable. This latter
claim is seen by the following reasoning: Let v be some vertex in V \ V ′. Look

at the formula TSEG,f ′ for f ′(u) =

{
1− f(u) u = v

f(u) otherwise
.

By Fact 13, TSEG,f ′ is satisfiable. AV is a sub-formula of TSEG,f ′ , and
hence satisfiable as well. AV (G) is a collection of PARITY functions which
are Sensitive. Finally, for V ′ ⊆ V , ∂AV ′ = {xe; e ∈ E(V ′, V \ V ′)}. This is true
because if e = {v, u}, v ∈ V ′, u ∈ V \ V ′ then PARITYv is the only function
in AV ′ dependent on xe. Hence e(AV ) ≥ e(G) and we apply Theorem 9 to
complete the proof.

Corollary 16. For G a 3-regular connected expander (i.e. e(G) = Ω(|V |))n
and f an odd-weight function on V (G), S(TSEG,f ) = 2Ω(|TSEG,f |).

Definition 17 (Our version of PHP). The pigeonhole principle PHPn
n−1 is the

CNF formula over variables xij with 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 consisting of:

• Pigeon axioms:

Pi =

n−1∨
j=1

xij ,

asserting that each pigeon goes to some hole.

• Hole axioms:
¬xi1j ∨ ¬xi2j (i1 ̸= i2),

asserting that no two pigeons occupy the same hole.

Clearly PHPn
n−1 is unsatisfiable, since no injective function [n] → [n − 1]

exists.

Theorem 18. There is a constant c > 1 such that any resolution refutation of
PHPn

n−1 requires size cn.

Proof. Here we call a truth assignment α i-critical if it falsifies exactly the
pigeon axiom Pi. It is critical if it is i-critical for some i.

Given a clause C, let C(α) denote its truth value under α.

Claim 1. Let C be any clause and C+ the clause obtained by replacing every
negated literal ¬xij by the subclause Xij =

∨
i′ ̸=i xi′j . Then for any critical

assignment α we have C+(α) = C(α).

Exercise 19. Prove Claim 1.

Claim 2. Every resolution refutation of PHPn
n−1 must contain a clause where

the width of C+ satisfie w(C+) ≥ 2n2/9.

Proof of Claim 2. Given a clause C let Pigeon(C) ⊆ [n] be the set of pigeons
where there is some i-crirical assignment α for which C(α) = 0. Let µ(C) =
|Pigeon(C)|. We observe that
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1. µ(Pi) = 1 for each pigeon axiom Pi,

2. µ(∅) = n since every assignment falsifies ∅,

3. if clause C was derived from clauses A,B using the one resolution step
then µ(C) ≤ µ(A) + µ(B). This is because every assignment falsifying C
must falsify A or B.

Therefore, we can conclude from the conditions above that if R was a resolution
refutation of PHPn

n−1 there is some clause C in R where n/3 ≤ µ(C) ≤ 2n/3.
Now we want to argue that for that clause C, we have w(C+) ≥ 2n2/9.

Fix i ∈ Pigeon(C) and some j /∈ Pigeon(C) so that α is an i-critical assignment
that falsifies C. Without loss of generality, assume that α sent a pigeon j to
a hole k. By flipping α on xik and xjk we obtain a j-critical assignment α′.
Furthermore, C(α) = C+(α) = 0 and C(α′) = C+(α′) = 1 by construction and
the previous claim. Therefore, since C+ contains only positive literals and only
variable whose truth value was switched from 0 to 1 is xik, we conclude that
C+ must contain xik.

Repeating the argument for all pairs (i, j) such that i ∈ Pigeon(C) and j /∈
Pigeon(C), and since all pairs must yield a distinct variable in C+, we can
conclude that the width of C+ is at least s(n − s) where s = |Pigeon(C)|. By
assumption that n/3 ≤ |Pigeon(C)| ≤ 2n/3, we get that w(C+) ≥ 2n2/9.

Now we will use that width lower bound to get the size lower bound. We
let R be a resolution refutation of PHPn

n−1 and let R+ be the positive version
where each clause C ∈ R is replaced by its positive version C+. Let ε > 0 be a
constant whose exact value we will choose later.

Definition 20. A clause in R+ is ε-wide if its width satisfies w(C+) ≥ εn2.

Let S be the number of wide clauses in the refutation R+. We can conclude
that there is some variable xij appearing in at least εS wide clauses. by counting
the number of variables in wide clauses. Therefore, we can define a restriction
that sets xij = 1, all xi′j = 0 for i′ ̸= i, and all xij′ = 0 for j′ ̸= j.

Notice that once we apply the restriction to R (and hence to R+), R is now a
resolution refutation of PHPn−1

n−2 and there are now at most (1−ε)S wide clauses
in R+. Therefore, we can inductively apply k restrictions for k = ln(S)/ε so
that we get a proof of PHPn−k

n−k−1 where the positive version R+ contains no wide

clauses since there are at most S(1−ε)k wide clauses and S(1−ε)k < Se−kε ≤ 1
by the choice of ε and k.

However, from the previous claim, we know that in any refutation of PHPn−k
n−k−1

there is some clause C where w(C+) ≥ 2(n− k)2/9 but on the other hand, we
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have produced a refutation of PHPn−k
n−k−1 with no wide clauses by restricting

the proof of PHPn
n−1. Therefore, the inequality

2(n− k)2

9
=

2(n− ln(S)
ε )

9
≤ w(C+) < εn2

must be satisfied. After some algebra, we can conclude that ln(S) ≥ εn−ε
√

9ε
2 n,

so picking ε = 8/81 to maximize the bound means that the resolution refutation
of PHPn

n−1 must contain at least

S ≥ exp

(
8n

243

)
≥ 1.033n

wide clauses, which finishes the proof.
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