

Formal Proofs and their Lengths III

Frege systems II

Definition 1 (Frege rule). Let L be a complete system of logical connectives. An ℓ -ary *Frege rule* is a $(\ell + 1)$ -tuple of formulas A_1, \dots, A_ℓ, A_0 (using just the connectives from L , L -formulas) written as

$$\frac{A_1, \dots, A_\ell}{A_0},$$

such that $A_1, \dots, A_n \models A_0$. A 0-ary Frege rule is called a *Frege axiom scheme*.

Definition 2 (Frege proof). Let F be a finite set of Frege rules in a finite set of connectives L . An F -proof of an L -formula C from formulas B_1, \dots, B_t is any sequence of formulas D_1, \dots, D_k , such that:

- $D_k = C$
- For all $i = 1, \dots, k$ at least one of the following holds:
 - $D_i \in \{B_1, \dots, B_t\}$
 - There is a Frege rule

$$\frac{A_1, \dots, A_\ell}{A_0} \in F,$$

and numbers $j_1, \dots, j_\ell < i$ and a substitution¹ σ such that

$$\sigma(A_1) = D_{j_1}, \dots, \sigma(A_\ell) = D_{j_\ell}, \text{ and } \sigma(A_0) = D_i.$$

The fact that π is an F -proof of C from B_1, \dots, B_t is denoted

$$\pi : B_1, \dots, B_t \vdash_F C,$$

if we drop the ‘ π ’ part, we just mean that such a π exists.

We call the number of formulas in a proof k the *number of steps* and denote it $\mathbf{k}(\pi)$. We call the length of the longest formula in π the *width* of π and denote it $\mathbf{w}(\pi)$. We call the size of π the sum of the lengths of all formulas in π and denote it $|\pi|$.

Definition 3 (Frege system). A finite set of Frege rules F , with formulas using the connectives from a finite complete set L , is a *Frege proof system* if it is *sound* (cannot derive a non-tautology) and *implicationally complete* that is: For any L -formulas B_1, \dots, B_t, C we have

$$B_1, \dots, B_t \models C \iff B_1, \dots, B_t \vdash_F C.$$

Fact 4. The textbook Frege system is implicaionally complete.

¹A mapping from variables to formulas, when applied to a formula it outputs a formula where each variable is replaced by the respective formula according to σ .

Exercise 5. Show that the textbook Frege system is a Frege system. How many Frege rules does it have?

Exercise 6 (Frege can prove substitutions!). Show that if F is a Frege system in finite complete set of connectives L and $\pi = (D_1, \dots, D_k)$ fulfills

$$\pi : B_1, \dots, B_t \vdash_F C,$$

and σ is a substitution then for some π' ,

$$\sigma(B_1), \dots, \sigma(B_t) \vdash_F \sigma(C).$$

What's the smallest $\mathbf{k}(\pi')$ you can achieve?

Lemma 7 (Deduction lemma). Let F be a Frege system. Assume that

$$\pi : A, B_1, \dots, B_t \vdash_F C,$$

then there is π' such that

$$\pi' : B_1, \dots, B_t \vdash_F A \rightarrow C,$$

with $\mathbf{k}(\pi') = O(\mathbf{k}(\pi))$, $\mathbf{w}(\pi') = O(\pi)$ and $|\pi'| \leq O(|\pi|^2)$.

Exercise 8. Show that there is a proof of $\neg\neg a \rightarrow a$ in the textbook Frege system using the Deduction lemma. That is, find a proof:

$$\pi : \neg\neg a \vdash_{\text{textbook Frege}} a$$

Fact 9. Let C be a tautology which is not a substitution instance of any shorter tautology and let F be a Frege system. Then any $\pi : \vdash_F C$, must have $\mathbf{k}(\pi) = \Omega(\text{ldp}(C))$ and $|\pi| = \Omega(m)$, where $\text{ldp}(C)$ is the logical depth of C which is defined to be the length of the longest path in the representation tree of C and m is the sum of all lengths of subformulas of C .

Exercise 10. Use the previous fact to prove that any Frege proof

$$\pi : \vdash_F \overbrace{\neg \dots \neg}^{2n} (a \rightarrow a),$$

must have $\mathbf{k}(\pi)$ at least $\Omega(n)$ and $|\pi|$ at least $\Omega(n^2)$.

Fact 11 (Reckhow's Theorem). Any two Frege systems F_1 and F_2 have sizes of their shortest proofs of any particular sequence of tautologies polynomially related.

Open problem 12. Let F be a Frege system. Prove any lower bound on the size of F -proofs on a sequence aby sequence that is larger than $\Omega(n^2)$.

Propositional sequent calculus

Definition 13. Let A_1, \dots, A_n and B_1, \dots, B_m be propositional formulas. A sequent is a symbol of the form

$$A_1, \dots, A_n \longrightarrow B_1, \dots, B_m.$$

The semantics for a sequent are the same as for the formula

$$\bigwedge_i A_i \rightarrow \bigvee_i B_i,$$

which is semantically equivalent to

$$\bigvee_i \neg A_i \vee \bigvee_i B_i.$$

Definition 14. The Sequent calculus is a propositional proof system (which proves sequents), whose proves are given as follows.

A proof of a sequent S is a sequence of sequents, S_1, \dots, S_k , where $S_k = S$ and each S_i is either an *initial sequent*

$$x \longrightarrow x,$$

where x is a propositional variable or was derived from $S_j, S_l, 1 \leq j \leq l \leq l \leq k$ by one of the following rules.

Weak Structural Rules

$$\begin{array}{ll} (\text{Exchange:L}) \frac{\Gamma, A, B, \Pi \longrightarrow \Delta}{\Gamma, B, A, \Pi \longrightarrow \Delta} & (\text{Exchange:R}) \frac{\Gamma \longrightarrow \Delta, A, B, \Lambda}{\Gamma \longrightarrow \Delta, B, A, \Lambda} \\ (\text{Contraction:L}) \frac{\Gamma, A, A, \Pi \longrightarrow \Delta}{\Gamma, A, \Pi \longrightarrow \Delta} & (\text{Contraction:R}) \frac{\Gamma \longrightarrow \Delta, A, A, \Lambda}{\Gamma \longrightarrow \Delta, A, \Lambda} \\ (\text{Weakening:L}) \frac{\Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta} & (\text{Weakening:R}) \frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, A} \end{array}$$

The Cut Rule

$$(\text{Cut}) \frac{\Gamma \longrightarrow \Delta, A \quad \Gamma, A \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}$$

The Propositional Rules

$$\begin{array}{ll} (\neg:\text{L}) \frac{\Gamma \longrightarrow \Delta, A}{\Gamma, \neg A \longrightarrow \Delta} & (\neg:\text{R}) \frac{\Gamma, A \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \neg A} \\ (\wedge:\text{L}) \frac{\Gamma, A, B \longrightarrow \Delta}{\Gamma, A \wedge B \longrightarrow \Delta} & (\wedge:\text{R}) \frac{\Gamma \longrightarrow \Delta, A \quad \Gamma \longrightarrow \Delta, B}{\Gamma \longrightarrow \Delta, A \wedge B} \\ (\vee:\text{L}) \frac{\Gamma, A \longrightarrow \Delta \quad \Gamma, B \longrightarrow \Delta}{\Gamma, A \vee B \longrightarrow \Delta} & (\vee:\text{R}) \frac{\Gamma \longrightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \vee B} \end{array}$$

Sequent calculus is denoted LK (for Logischer Kalkülus) or PK for the propositional version.

Fact 15. $LK \equiv_p F$

Definition 16. LK^- is the subsystem of LK , which forbids the use of the cut rule.

Exercise 17. Prove $LK^- \vdash \rightarrow A \vee \neg A$

Exercise 18. Prove $LK^- \vdash \rightarrow (A \vee \neg A) \wedge (B \vee \neg B)$

Exercise 19. Prove $LK^- \vdash \rightarrow (A \wedge B) \vee (A \wedge \neg B) \vee (A \wedge \neg B) \vee (\neg A \wedge \neg B)$

Exercise 20. Prove LK^- is complete.

Exercise 21. Is LK^- implicationally complete?