
Formal Proofs and their Lengths II

Propositional Proof Systems

Definition 1. Let A be a finite set of symbols. We define A≤n :=
⋃n

i=0 A
i and

A∗ :=
⋃

i≥0 A
i.

Definition 2. A predicate f : {0, 1}∗ → {0, 1} is in P if there is a Turing
machine M computing f in polynomial time1.

Definition 3 (Cook-Reckhow). A propositional proof system (or a PPS) P is
determined by a predicate f(x, y) in P such that for every propositional formula
A:

• Soundness:

(∃y ∈ {0, 1}∗) f(A, y) = 1 =⇒ A is a tautology,

• Completeness:

(∃y ∈ {0, 1}∗) f(A, y) = 1 ⇐= A is a tautology,

here we interpret f to be a predicate checking that y is a valid “proof” of A.
That is, if f(A, y) = 1, then we say y is a P -proof of A.

Example 4. The truth-table proof system is a system determined by a predicate

f(A, y) =

{
1 y is the truth-table of A, (∀x)ttA(x) = 1,

0 otherwise.

Exercise 5. Show that the truth-table proof system is a propositional proof
system by the definition of Cook-Reckhow.

Exercise 6 (First lower bound!). Show that all truth-table proofs of some
family of tautologies are exponentially long in the size of the corresponding
tautology.

A Little Bit of Complexity

Definition 7. A predicate f : {0, 1}∗ → {0, 1} is in NP if there is a function
g(x, y) in P and a polynomial p such that for every x ∈ {0, 1}n:

f(x) = 1 ⇐⇒ (∃y ∈ {0, 1}≤p(n)) g(x, y) = 1,

if such a y exists it is called the witness.
1The precise definition of a Turing machine in fact does not matter. If you have never

encountered the definition of a Turing machine, it is enough to consider the intuitive idea of
an algorithm, whose number of steps does not exceed a specific polynomial in the length of
the input and this itself just means, that the algorithm is somehow feasible — does not run
too long. For example, such an algorithm cannot look at every truth assignment of a formula
it receives as an input.

1



Definition 8. A predicate f : {0, 1}∗ → {0, 1} is in coNP if there is a function
g(x, y) in P and a polynomial p such that for every x ∈ {0, 1}n:

f(x) = 0 ⇐⇒ (∃y ∈ {0, 1}≤p(n)) g(x, y) = 0.

Exercise 9. Show that f(x) ∈ NP if and only if ¬f(x) ∈ coNP.

Definition 10. CNF-SAT is the predicate which assigns 1 exactly to those
CNF formulas which are satisfiable. DNF-TAUT is the predicate which assigns
1 exactly to those CNF formulas which are satisfiable.

Theorem 11 (Cook-Levin). The following equalities hold:

• P = NP if and only if CNF-SAT ∈ P.

• P = coNP if and only if DNF-TAUT ∈ P

• NP = coNP if and only if DNF-TAUT ∈ NP
if and only if CNF-SAT ∈ coNP

Theorem 12 (Cook-Reckhow). NP = coNP if and only if there is a propositional
proof system P which has polynomial sized P -proofs of every tautology.

Exercise 13. Prove the Cook-Reckhow theorem.

Frege systems I

Definition 14. The textbook Frege proof system is determined by the proofs
of the following form:

The connectives in every formula in the system are just {¬,→}. A proof of
a formula A is a sequence of propositional formulas (B1, . . . , Bk), where Bk = A
and for each 1 ≤ i ≤ k one of the following is true:

• Bi has any of the forms

1. p → (q → p)

2. (p → (q → r)) → ((p → q) → (p → r))

3. (¬p → ¬q) → (q → p),

where p, q and r are arbitrary formulas. Such a Bi is called an axiom (in
the textbook Frege system).

• There are 1 ≤ j1, j2 < i such that Bj1 = p, Bj2 = (p → q) and Bi = q.
Such a Bi is said to be introduced by the modus ponens rule:

p, p → q

q

Example 15. Prove (a → a) → (a → (a → a)) in the textbook Frege system.

2



Example 16. Prove (a → b) → (a → a) in the textbook Frege system.

Example 17. Prove the textbook Frege system is sound.

Example 18 (Bonus). Prove a → a in the textbook Frege system.

Open problem 19. Does every tautology have a polynomial sized proof in the
textbook Frege system?

3


