
Formal Proofs and their Lengths I

Basic propositional logic

Definition 1. Let V = {x1, x2, x3, . . . } be a countable set, we will call V the
set of propositional variables (atoms). We define a propositional formula (in the
DeMorgan Language) to be a word defined by the following recursive conditions:

• A is a formula, if it is a propositional variable.

• A is a formula, if it is of the form (B ∧ C), where B and C are formulas.

• A is a formula, if it is of the form (B ∨ C), where B and C are formulas.

• A is a formula, if it is of the form ¬B, where B is a formula.

A subformula of a formula A is a subword of A which is also a formula. The
notation A(p1, . . . , pn) means that the propositional variables occuring in A are
among the set {p1, . . . , pn}.

Definition 2. Let A(p1, . . . , pn) be a propositional formula. We call any
function h : {p1, . . . , pn} → {0, 1} a truth assignment (of A). Any truth
assignment can be extended to give a {0, 1}-value to A by the obvious recursive
definition. If h(pi) = bi for each 1 ≤ i ≤ n, we denote the value h(A) as
A(b1, . . . , bn).

We say A is satisfiable if there is a truth assignment such that h(A) =
1, otherwise we call it unsatisfiable. We say A is a tautology if every truth
assignment h results in h(A) = 1.

Exercise 3. Observe that a propositional formula A is a tautology iff ¬A is
unsatisfiable.

Definition 4. A function of the form f : {0, 1}n → {0, 1} is a Boolean function,
every propositional formula A(p1, . . . , pn) determines the truth-table function
ttA as

ttA : (b1, . . . , bn) 7→ A(b1, . . . , bn).

Exercise 5. Show that every Boolean function is a truth-table function of some
propositional formula A.

Exercise 6. Show that for every propositional Boolean formula in the De
Morgan language A there exists a formula1 A′ in the language using only the
connectives form the set {¬,→} (interpreted as negation and implication) such
that ttA = ttA′ .

Definition 7. A propositional formula A is in the conjunctive normal form
(CNF) if it is of the form

∧
i

∨
j ℓij , where each ℓij is either a propositional

variable or a negation of one (a literal).

1This is not a propositional formula by our definition, but you can check an analogous
definition can be made for this set of connectives.

1



A propositional formula A is in the disjunctive normal form (DNF) if it is
of the form

∨
i

∧
j ℓij , where each ℓij is a literal.

Disjunctions of literals are called clauses, and conjunctions of literals are
called logical terms.

Exercise 8. Show that every Boolean function is a truth-table function of some
DNF A and some CNF B.

Exercise 9. Show there is a fast (polynomial time) algorithm deciding whether
a DNF A is satisfiable.

Exercise 10. Show there is a fast (polynomial time) algorithm deciding whether
a CNF A is a tautology.

Exercise 11. Show that there is a Boolean function such that its smallest
DNF representation is exponentially smaller than its CNF representation (or
vice-versa).

Exercise 12 (bonus). Show that for each polynomial p(x) there is a Boolean
function with n inputs, which is not a truth-table function of any propositional
formual A with less than p(n) symbols.

Propositional Proof Systems

Definition 13. Let A be a finite set of symbols. We define A≤n :=
⋃n

i=0 A
i

and A∗ :=
⋃

i≥0 A
i.

Definition 14. A predicate f : {0, 1}∗ → {0, 1} is in P if there is a Turing
machine M computing f in polynomial time2.

Definition 15 (Cook-Reckhow). A propositional proof system (or a PPS) P is
determined by a predicate f(x, y) in P such that for every propositional formula
A:

A is a tautology ⇐⇒ (∃y ∈ {0, 1}∗) f(A, y),

here we interpret f to be a predicate checking that y is a valid “proof” of A.
That is, if f(A, y) = 1, then we say y is a P -proof of A.

Example 16. The truth-table proof system is a system determined by a predicate

f(A, y) =

{
1 y is the truth-table of A, (∀x)ttA(x) = 1,

0 otherwise.

Exercise 17. Show that the truth-table proof system is a propositional proof
system by the definition of Cook-Reckhow.

Exercise 18 (First lower bound!). Show that every truth-table proof of a
tautology is exponentially long in the number of variables in that tautology.

2The precise definition of a Turing machine in fact does not matter. If you have never
encountered the definition of a Turing machine, it is enough to consider the intuitive idea of
an algorithm, whose number of steps does not exceed a specific polynomial in the length of
the input and this itself just means, that the algorithm is somehow feasible — does not run
too long. For example, such an algorithm cannot look at every truth assignment of a formula
it receives as an input.

2



A Little Bit of Complexity

Definition 19 (*). A predicate f : {0, 1}∗ → {0, 1} is in NP if there is a
function g(x, y) in P and a polynomial p such that for every x ∈ {0, 1}n:

f(x) = 1 ⇐⇒ (∃y ∈ {0, 1}≤p(n)) g(x, y) = 1,

if such a y exists it is called the witness.

Definition 20 (*). A predicate f : {0, 1}∗ → {0, 1} is in coNP if there is a
function g(x, y) in P and a polynomial p such that for every x ∈ {0, 1}n:

f(x) = 0 ⇐⇒ (∃y ∈ {0, 1}≤p(n)) g(x, y) = 0.

Exercise 21 (*). Show that f(x) ∈ NP if and only if ¬f(x) ∈ coNP.

Theorem 22 (Cook-Reckhow). NP = coNP if and only if there is a propositional
proof system P which has polynomial sized P -proofs of every tautology.

Exercise 23 (*). Prove the Cook-Reckhow theorem.

Frege systems I

Definition 24. The textbook Frege proof system is determined by the proofs
of the following form:

The connectives in every formula in the system are just {¬,→}. A proof of
a formula A is a sequence of propositional formulas (B1, . . . , Bk), where Bk = A
and for each 1 ≤ i ≤ k one of the following is true:

• Bi has any of the forms

1. p → (q → p)

2. (p → (q → r)) → ((p → q) → (p → r))

3. (¬p → ¬q) → (q → p),

where p, q and r are arbitrary formulas. Such a Bi is called an axiom (in
the textbook Frege system).

• There are 1 ≤ j1, j2 < i such that Bj1 = p, Bj2 = (p → q) and Bi = q.
Such a Bi is said to be introduced by the modus ponens rule:

p, p → q

q

Example 25. Prove (a → a) → (a → (a → a)) in the textbook Frege system.

Example 26. Prove (a → b) → (a → a) in the textbook Frege system.

Example 27 (Bonus). Prove a → a in the textbook Frege system.

Open problem 28. Does every tautology have a polynomial sized proof in the
textbook Frege system?

3


