
Formal Proofs and their Lengths VI

Current exercise session is based upon the paper of P. Pudlák “Proofs as
games”. It can be found here: https://www.jstor.org/stable/2589349.

Exercise 1. Recall the pigeonhole principle which states that there is no injective
mapping between n+ 1 different pigeons and n different holes. We denote this
statement is PHPn+1

n . Express ¬PHPn+1
n as a CNF of size polynomial in n.

The above CNF (or more precisely a family of CNFs) is the one for which we
will derive exponential lower bounds for resolution refutations. The major part
of today’s session is devoted to the analysis of a certain combinatorial game.
Near the end we will show the correspondence between space complexity of the
mentioned game and size of resolution refutations of ¬PHPn+1

n .

A game

Definition 2. We consider the following game played between two players
Alice (falsifier or spoiler denoted simply as A) and Bob (prover or delayer
denoted simply as B). A pretends there is some mapping f contradicting
PHPn+1

n and B tries to convict her of lying. B can query A questions of
the following form “does pigeon p goes to hole h” and A must answer positively
or negatively. B stores A’s answers in the form (p, h, yes / no), but through the
course of the game he might erase particular records from his list. A sees the
actual list stored by B.

B wins iff there is a direct contradiction among the records stored in his
list. This means that either for all holes h B’s list contains records (p, h,no) for
a particular pigeon, or B’s list contains records (p′, h, yes) and (p′′, h, yes) for
p′ ̸= p′′, or B’s list contains records (p, h′, yes) and (p, h′′, yes) for h′ ̸= h′′, or
B’s list contains records (p, h, yes) and (p, h,no).

Strategy (for B) is a function from the set of all the lists of records into
possible next moves which specify what to erase from the current list and what
to query next.

We will consider only the winning strategies which we will call just strategies.
We can also express any strategy as a function from the set of only the admissible
lists, i.e. lists which can actually appear through the course of the game.

Exercise 3. Try to come up with some strategy for which the set of all lists
and the set of all admissible lists do not equal.

Definition 4. Suppose a strategy is fixed. We define complexity of the
strategy as the number of different records that can appear in all possible
games.

Exercise 5. Recall that we identify a strategy with the function describing the
next move based on the current list, and we care only about the admissible lists.
Show that the strategy’s complexity equals the number of strategy’s rules, i.e.
it the size of the domain of the function as above.
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We emphasize that complexity manifests itself only through the course of
many different games played against the strategy.

Exercise 6. Try to come up with a strategy whose complexity is exponential
in n, although in any single game only poly of n different lists may appear.

Our goal is to prove that any strategy is necessarily of exponential complexity.
For that we will define a superstrategy (for A) which would force B into using
a lot of different lists. Here, superstrategy means a parameterized family of
strategies of A to play against B. We will also see that this superstrategy
doesn’t actually use a priori knowledge of B’s strategy.

Haken’s superstrategy

We assume n is divisible by 4.

Definition 7. Let α be a partial one-to-one assignment of n/4 different pigeons
to distinct holes. An A’s strategy induced by α is defined as follows. During
the course of a game A modifies α by possibly enlarging it to β. She may at
some point make it smaller, but α is always kept as a part of the β. These
updates are happening immediately after B asks a new question and an answer
is given based upon the updated β as will be explained below.

We first explain the rules to update β. If a pigeon p is not yet in β, then β
is being extended by (p, h) as soon as the number of prohibited holes for p given
by the current list of B is ≥ n/2. The hole h′ is prohibited iff there is a record
in the list of the form (p, h′,no). A hole h which is being assigned to p is any
hole which is neither prohibited by current list, nor is it taken by some different
pigeon as specified by β. If there is no such hole, then A gives up and B wins
automatically (A may give some contradictory answer). A pair (p, h) is erased
from β when (p, h, yes) is no longer on the B’s list and the number of prohibited
holes for p is < n/2.

After updating β, being presented with a question of the form “is the pigeon
p being mapped to h” A answers “yes” iff (p, h) ∈ β.

Exercise 8. * Assume that by playing against B with a strategy induced by α,
A at some point forces B to store a list which contains all the records of the form
(p, h, yes) for all (p, h) ∈ α (the list may contain additional records, as well).
Show that the complexity of B’s strategy is exponential in n. It might help to
show an exponential lower bound on the number of pairwise incompatible αs.

Unfortunately, the above assumption does not work.

Exercise 9. * Find a particular strategy for B which does not satisfy the above
assumptions.

What does hold, however, is that B must at some point store a lot of
information regarding α. This will be enough to show exponential complexity
of B’s strategy, as we will later see.
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Definition 10. Let us fix a list of records of B. We say that a pigeon p is
good (w.r.t. the current list of B) iff there is a record on the list of the form
(p, h, yes) or there are ≥ n/2 prohibited holes for p.

Exercise 11. Show that a pigeon p outside of the domain of α is good iff
p ∈ dom(β) \ dom(α).

We now want to prove the following lemma. The superstrategy defined above
is called Haken’s supestrategy and is denoted as HS.

Lemma 12. If A uses HS, then however B plays, at some point before the
games ends, he must create a list for which there are exactly n/4 good pigeons.

Exercise 13 (towards 12). Show that if A uses HS, then she looses only when
she has to give up. Show that this happens only when there is a pigeon p
with ≥ n/2 prohibited holes so that all the remaining holes have already been
reserved for other pigeons by the assignment β. This means the size of the
domain of β is ≥ n/2. Derive that there is at least n/4 good pigeons. Use this
to show that at some point there were exactly n/4 good pigeons for B’s list.

Definition 14. Let R be the set of all lists for which there are exactly n/4
good pigeons. We say α is in r ∈ R iff r appears as B’s list when A plays by
the strategy induced by α. We say α is consistent with r ∈ R iff there is no
record in r contradicting α.

Exercise 15. Show that if α is in r, then α is compatible with r.

We say that a value is exponentially large (in n) iff it is greater than 2ϵn for
positive ϵ. Similarly, a value is exponentially small (in n) iff it is smaller than
2−ϵn.

Exercise 16. Let us pick α as above uniformly at random. Assume that for
any fixed r ∈ R the probability of α being compatible with r is exponentially
small. Derive that the probability of α being in r is exponentially small, as well.
Use that to show that the size of R is exponentially large. Conclude that the
B’s strategy has exponential complexity.

We think of the random process of selecting α as consisting of two stages.
We first choose the domain of α and then randomly assign chosen pigeons to
distinct holes.

Exercise 17. Let r ∈ R be fixed and let G denote the set of all good pigeons
for r. We know that |G| = n/4. Show that the average size of the intersection
of dom(α) and G is n/16. More generally, assume we have a set X of size n and
Y ⊆ X. Let us pick uniformly at random a subset of X of size n/k for some
k ≤ n. Then, the expected size of the intersection of Y and our random set is
exactly |Y |/k.

Fact 18. Fix some fraction of n smaller than n/16, say n/64. Then, the
probability for a size of the intersection of dom(α) and G to be at most n/64 is
exponentially small.
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If you want to prove the above, it is enough to calculate that the probability
of the bad event is exactly(

n+ 1

n/4

)−1 n/64∑
i=0

(
n/4

i

)(
n+ 1− n/4

n/4− i

)
and to show that this value is exponentially small in n.

So now we may assume that the intersection of dom(α) and G is at least
n/64.

Exercise 19. Fix a pigeon p ∈ dom(α) ∩ G. Show that the probability of
(p, h) ∈ α being consistent with r is at most 1/2. Conclude that if the holes
for pigeons from dom(α) were all chosen randomly and independently, then the
probability of α to be consistent with r would have been ≤ (1/2)n/64.

The problem is that holes are not really chosen independently. One needs
to ensure that if a hole has been chosen for a pigeon p, then the same hole
would not be chosen again for a different pigeon. Show that one can at least
upper-bound the probability of α being consistent with r by (3/4)n/64.

This concludes the whole proof of the theorem below.

Theorem 20. There exists a positive ϵ so that the complexity of any strategy
of B is at least 2ϵn.

Proofs

It remains to establish a correspondence between resolution refutations and
Bs’ strategies so that the size of a refutation would correspond to the complexity
of a strategy.

Fix a resolution refutation of ¬PHPn+1
n and consider its’ DAG representation

(top-to-bottom ending with the empty clause). Each node is labeled as a clause
and has either zero or two ancestors. We label each edge by the literal which
was used in a resolution rule to derive a lower clause. To define a strategy for
B we first flip the DAG, i.e. we reverse all the edges and we relabel all the
nodes by negating the clauses used in the original labeling. The flipped clauses
(conjuctions of literals) are to be interpreted as B’s lists where a literal xp,h

represents the record (p, h, yes) and ¬xp,h represents (p, h,no).
B’s strategy is as follows. At the beginning he starts with the empty list.

At any point through the game, seeing a list of records ρ which corresponds
to a label of some node in our graph, B asks A a question of the form “does
pigeon p goes to hole h”, where xp,h is a variable labeling edges connecting given
node and its’ two children. Based upon the answer he moves upwards the graph
and updates his list to exactly correspond to the labeling of the node which he
arrives at.

Exercise 21. Show that the above is a winning strategy for B. Show that the
complexity of the strategy is exactly the size of the refutation.
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