Formal Proofs and their Lengths V

Resolution

We identify CNF formulas with set of clauses C;, where each Cj is a set of
literals ; and a literal is either a variable or its negation.

Definition 1. Given a CNF C = {C{",...,C'"it} a resolution refutation of

C is a sequence of clauses C1, ..., C so that
e () is an empty set,

e cach C; is either an initial clause C!™* or is derived from the previous
clauses via the resolution rule

Cu{p} C'U{-p}
cuc

For a general formula ¢ its resolution refutation is defined as a resolution
refutation of L(¢).

We have already seen that resolution is sound, i.e. given a CNF C with a valid
resolution refutation it follows that C is unsatisfiable. We have also established
that resolution can be viewed as a proof system, where in order to prove ¢ one
considers a refutation of =¢ and in order to transform —¢ into an equisatisfiable
CNF one applies Tseitin’s limited extension procedure. It remains to show that
resolution is complete.

Theorem 2. Resolution is a complete refutation system, i.e. if ¢ is unsatisfiable,
then there is a resolution refutation of ¢.

Exercise 3 (towards 2). Let us fix a variable p and divide a CNF C into four
parts:

e Coo={CeClp,p¢Ck
e Coy={CelClpg¢gC,—pecCl;
e Cin={CeC|lpeC,—p¢C}
e (1 ={CeClC|p,peC}.

Let C contain Cyp and all clauses acquired by application of the resolution rule
on all pairs of clauses from Cpq ~and C10, where p is the resolved variable. Show
that if C is unsatisfiable, then C is unsatisfiable, as well.

Exercise 4 (towards 2). Apply the previous exercise inductively to finish the
proof of 2. What is the upper bound on the size of the refutation?

Exercise 5. Conclude that resolution is a Cook-Reckhow proof system.

Exercise 6. Using resolution show that 2-CNF-SAT is in P.



Proofs as games

Current exercise session is based upon the paper of P. Pudldk “Proofs as
games”. It can be found here: https://www.jstor.org/stable/2589349.

Exercise 7. Recall the pigeonhole principle which states that there is no injective
mapping between n + 1 different pigeons and n different holes. We denote this
statement is PHP 1. Express ~PHP"*! as a CNF of size polynomial in n.

The above CNF (or more precisely a family of CNFs) is the one for which we
will derive exponential lower bounds for resolution refutations. The major part
of today’s session is devoted to the analysis of a certain combinatorial game.
Near the end we will show the correspondence between space complexity of the
mentioned game and size of resolution refutations of =P HP» 1,

A game

Definition 8. We consider the following game played between two players
Alice (falsifier or spoiler denoted simply as A) and Bob (prover or delayer
denoted simply as B). A pretends there is some mapping f contradicting
PHP" ! and B tries to convict her of lying. B can query A questions of
the following form “does pigeon p goes to hole h” and A must answer positively
or negatively. B stores A’s answers in the form (p, h,yes / no), but through the
course of the game he might erase particular records from his list. A sees the
actual list stored by B.

B wins iff there is a direct contradiction among the records stored in his
list. This means that either for all holes h B’s list contains records (p, h, no) for
a particular pigeon, or B’s list contains records (p’, h,yes) and (p”, h,yes) for
p’ # p”, or B’s list contains records (p, h',yes) and (p, h”,yes) for b’ # h”, or
B’s list contains records (p, h,yes) and (p, h, no).

Strategy (for B) is a function from the set of all the lists of records into
possible next moves which specify what to erase from the current list and what
to query next.

We will consider only the winning strategies which we will call just strategies.
We can also express any strategy as a function from the set of only the admissible
lists, i.e. lists which can actually appear through the course of the game.

Exercise 9. Try to come up with some strategy for which the set of all lists
and the set of all admissible lists do not equal.

Definition 10. Suppose a strategy is fixed. We say the the complexity of
the strategy is the number of different records that can appear in all possible
games.

Exercise 11. Recall that we identify a strategy with the function describing
the next move based on the current list, and we care only about the admissible
lists. Show that the strategy’s complexity equals the number of strategy’s rules,
i.e. it the size of the domain of the function as above.



We emphasize that complexity manifests itself only through the course of
many different games played against the strategy.

Exercise 12. Try to come up with a strategy whose complexity is exponential
in n, although in any single game only poly of n different lists may appear.

Our goal is to prove that any strategy is necessarily of exponential complexity.
For that we will define a superstrategy (for A) which would force B into using
a lot of different lists. Here, superstrategy means a parameterized family of
strategies of A to play against B. We will also see that this superstrategy
doesn’t actually use the a priori knowledge of B’s strategy.



