
Formal Proofs and their Lengths IV

Refutation systems

Definition 1. We call a poly-time predicate R(x, y) a refutation system iff
for any propositional formula ϕ there is πϕ so that R(ϕ, πϕ) accepts iff π is
unsatisfiable.

Exercise 2. Show that any refutation system is efficiently transformable into
a proof system and vice versa.

Limited extension

Resolution is a refutation system which works with CNFs only. This may
seem as a crucial flaw, since there are boolean formulas whose equivalent CNF
formulas are of exponential size. The way to overcome this is instead of equivalence
consider the equisatisfiability.

Definition 3. Two formulas ϕ and ψ are equisatisfiable iff ϕ is satisfiable iff
ψ is satisfiable.

Exercise 4. How hard is the problem of determining whether two given formulas
are equivalent, equisatisfiable?

Theorem 5 (Tseitin). There is a poly-time algorithm L which on input a
boolean formula ϕ (in the De Morgan language) produces an equisatisfiable
CNF formula L(ϕ).

Resolution

From now on we will identify CNF formulas with set of clauses Ci, where
each Ci is a set of literals lj and a literal is either a variable or its negation.

Definition 6. Given a CNF C = {Cinit
1 , ..., Cinit

m } a resolution refutation of
C is a sequence of clauses C1, ..., Ck so that

• Ck is an empty set,

• each Cj is either an initial clause Cinit
i or is derived from the previous

clauses via the resolution rule

C ∪ {p} C ′ ∪ {¬p}
C ∪ C ′

For a general formula ϕ its resolution refutation is defined as a resolution
refutation of L(ϕ).

Exercise 7. Show that resolution is a sound refutation system, i.e. if ϕ has a
resolution refutation, then ϕ is unsatisfiable.

1



Exercise 8. Express a statement “there is a linear ordering on 2 elements with
no endpoints” as a CNF. Derive a resolution refutation of this statement.

Exercise 9. Show that resolution is a complete refutation system, i.e. if ϕ is
unsatisfiable, then there is a resolution refutation of ϕ.

Exercise 10. Conclude that resolution is a Cook-Reckhow proof system.

Exercise 11. Using resolution show that 2-CNF-SAT is in P.

DPLL procedure and R∗

Given a CNF C we consider the following SAT-solving procedure pictured
as labeled binary tree: at the root pick any atom p, label the root by p and
consider two arrows leaving it labeled p1 and p0, respectively. Going along the
arrow pb, b ∈ {0, 1}, substitute p := b in all clauses in C. Then pick another
variable q to label the node, split the subtree into two and label the arrows
q0 and q1 as before, etc. Every node v in the tree determines a partial truth
assignment αv by looking at the labels of the arrows leading from the root to
v. The procedure stops at node v (i.e. the tree does not branch from v) if αv

falsifies a clause in C.

Exercise 12. Show that the above procedure solves CNF-SAT. What if one
applies the procedure to an unsatisfiable CNF?

Exercise 13. Apply the DPLL procedure to the CNF formula from the exercise
8.

We can picture a general resolution refutation as a directed acyclic graph (or
just DAG) with vertices corresponding to clauses in the refutation and edges
connecting a clause with two clauses used to derive it. If mentioned DAG is
a tree, then the corresponding refutation is called tree-like. A subsystem of
resolution with only tree-like refutations is called tree-like resolution and is
denoted as R∗. A crucial observation is that there is a natural correspondence
between R∗ refutations and DPLL computations.

Theorem 14. Let C be an unsatisfiable CNF and C̃ contain all clauses which are
subclauses of some clauses from C. Then, one can construct an R∗ refutation
of C̃ using a DPLL computation on C. Similarly, an R∗ refutation of C is
transformable into a DPLL computation on C.

2


