Formal Proofs and their Lengths III

Frege systems I

Example 1. Prove $a \rightarrow a$ in the textbook Frege system.

A Little Bit of Complexity

Definition 2. A predicate $f : \{0,1\}^* \to \{0,1\}$ is in **NP** if there is a predicate g(x,y) in **P** and a polynomial p such that for every $x \in \{0,1\}^n$:

$$f(x) = 1 \iff (\exists y \in \{0, 1\}^{\le p(n)}) g(x, y) = 1,$$

if such a y exists it is called the *witness*.

Definition 3. A predicate $f : \{0,1\}^* \to \{0,1\}$ is in **coNP** if there is a predicate g(x, y) in **P** and a polynomial p such that for every $x \in \{0,1\}^n$:

$$f(x) = 0 \iff (\exists y \in \{0, 1\}^{\le p(n)}) g(x, y) = 0.$$

Exercise 4. Show that $f(x) \in \mathbf{NP}$ if and only if $\neg f(x) \in \mathbf{coNP}$.

Definition 5. CNF-SAT is the predicate which assigns 1 exactly to those CNF formulas which are satisfiable. DNF-TAUT is the predicate which assigns 1 exactly to those CNF formulas which are satisfiable.

Theorem 6 (Cook-Levin). The following equalities hold:

- $\mathbf{P} = \mathbf{NP}$ if and only if $CNF-SAT \in \mathbf{P}$.
- $\mathbf{P} = \mathbf{coNP}$ if and only if DNF-TAUT $\in \mathbf{P}$
- NP = coNP if and only if DNF-TAUT ∈ NP if and only if CNF-SAT ∈ coNP

Theorem 7 (Cook-Reckhow). NP = coNP if and only if there is a propositional proof system *P* which has polynomial sized *P*-proofs of every tautology.

Exercise 8. Prove the Cook-Reckhow theorem.

Frege systems II

Definition 9 (Frege rule). Let L be a complete system of logical connectives. An ℓ -ary *Frege rule* is a an $(\ell + 1)$ -tuple of formulas A_1, \ldots, A_l, A_0 (using just the connectives from L, L-formulas) written as

$$\frac{A_1,\ldots,A_l}{A_0},$$

such that $A_1, \ldots, A_n \models A_0$. A 0-ary Frege rule is called a *Frege axiom scheme*.

Definition 10 (Frege proof). Let F be a finite set of Frege rules in a finite set of connectives L. An F-proof of an L-formula C from formulas B_1, \ldots, B_t is any sequence of formulas D_1, \ldots, D_k , such that:

- $D_k = C$
- For all i = 1, ..., k at least one of the following holds:
 - $-D_i \in \{B_1,\ldots,B_t\}$
 - There is a Frege rule

$$\frac{A_1,\ldots,A_\ell}{A_0}\in F,$$

and numbers $j_1, \ldots, j_{\ell} < i$ and a substitution¹ σ such that

$$\sigma(A_1) = D_{j_1}, \dots, \sigma(A_\ell) = D_{j_\ell}, \text{ and } \sigma(A_0) = D_i.$$

The fact that π is an *F*-proof of *C* from B_1, \ldots, B_t is denoted

 $\pi: B_1, \ldots, B_t \vdash_F C,$

if we drop the ' π :' part, we just mean that such a π exists.

We call the number of formulas in a proof k the number of steps and denote it $\mathbf{k}(\pi)$. We call the length of the longest formula in π the width of π and denote it $\mathbf{w}(\pi)$. We call the size of π the sum of the lengths of all formulas in π and denote it $|\pi|$.

Definition 11 (Frege system). A finite set of Frege rules F, with formulas using the connectives from a finite complete set L, is a *Frege proof system* if it is *sound* (cannot derive a non-tautology) and *implicationally complete* that is: For any L-formulas B_1, \ldots, B_t, C we have

$$B_1,\ldots,B_t\models C\iff B_1,\ldots,B_t\vdash_F C.$$

Fact 12. The textbook Frege system is implicationally complete.

Exercise 13. Show that the textbook Frege system is a Frege system. How many Frege rules does it have?

Exercise 14 (Frege can prove substitutions!). Show that if F is a Frege system in finite complete set of connectives L and $\pi = (D_1, \ldots, D_k)$ fulfills

$$\pi: B_1, \ldots, B_t \vdash_F C,$$

and σ is a substitution then for some π' ,

$$\sigma(B_1),\ldots,\sigma(B_t)\vdash_F \sigma(C).$$

What's the smallest $\mathbf{k}(\pi')$ you can achieve?

¹A mapping from variables to formulas, when applied to a formula it outputs a formula where each variable is replaced by the respective formula according to σ .

Lemma 15 (Deduction lemma). Let F be a Frege system. Assume that

$$\pi: A, B_1, \ldots, B_t \vdash_F C,$$

then there is π' such that

$$\pi': B_1, \ldots, B_t \vdash_F A \to C,$$

with $\mathbf{k}(\pi') = O(\mathbf{k}(\pi)), \ \mathbf{w}(\pi') = O(\pi)$ and $|\pi'| \le O(|\pi|^2)$.

Exercise 16. Show that there is a proof of $\neg \neg a \rightarrow a$ in the textbook Frege system using the Deduction lemma. That is, find a proof:

$$\pi: \neg \neg a \vdash_{\text{textbook Frege}} a$$

Fact 17. Let *C* be a tautology which is not a substitution instance of any shorter tautology and let *F* be a Frege system. Then any $\pi : \vdash_F C$, must have $\mathbf{k}(\pi) = \Omega(ldp(C))$ and $|\pi| = \Omega(m)$, where ldp(C) is the logical depth of *C* which is defined to be the length of the longest path in the representation tree of *C* and *m* is the sum of all lengths of subformulas of *C*.

Exercise 18. Use the previous fact to prove that any Frege proof

$$\pi:\vdash_F \overbrace{\neg \ldots \neg}^{2n} (a \to a)$$

must have $\mathbf{k}(\pi)$ at least $\Omega(n)$ and $|\pi|$ at least $\Omega(n^2)$.

Fact 19 (Reckhow's Theorem). Any two Frege systems F_1 and F_2 have sizes of their shortest proofs of any particular sequence of tautologies polynomially related.

Open problem 20. Let F be a Frege system. Prove any lower bound on the size of F-proofs on a sequence aby sequence that is larger than $\Omega(n^2)$.