Formal Proofs and their Lengths I

Basic propositional logic

Definition 1. Let $V=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countable set, we will call V the set of propositional variables (atoms). We define a propositional formula (in the DeMorgan Language) to be a word defined by the following recursive conditions:

- A is a formula, if it is a propositional variable.
- A is a formula, if it is of the form $(B \wedge C)$, where B and C are formulas.
- A is a formula, if it is of the form $(B \vee C)$, where B and C are formulas.
- A is a formula, if it is of the form $\neg B$, where B is a formula.

A subformula of a formula A is a subword of A which is also a formula. The notation $A\left(p_{1}, \ldots, p_{n}\right)$ means that the propositional variables occuring in A are among the set $\left\{p_{1}, \ldots, p_{n}\right\}$.

Definition 2. Let $A\left(p_{1}, \ldots, p_{n}\right)$ be a propositional formula. We call any function $h:\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow\{0,1\}$ a truth assignment (of A). Any truth assignment can be extended to give a $\{0,1\}$-value to A by the obvious recursive definition. If $h\left(p_{i}\right)=b_{i}$ for each $1 \leq i \leq n$, we denote the value $h(A)$ as $A\left(b_{1}, \ldots, b_{n}\right)$.

We say A is satisfiable if there is a truth assignment such that $h(A)=$ 1 , otherwise we call it unsatisfiable. We say A is a tautology if every truth assignment h results in $h(A)=1$.
Exercise 3. Observe that a propositional formula A is a tautology iff $\neg A$ is unsatisfiable.

Definition 4. A function of the form $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a Boolean function, every propositional formula $A\left(p_{1}, \ldots, p_{n}\right)$ determines the truth-table function $\mathbf{t t}_{A}$ as

$$
\mathbf{t t}_{A}:\left(b_{1}, \ldots, b_{n}\right) \mapsto A\left(b_{1}, \ldots, b_{n}\right)
$$

Exercise 5. Show that every Boolean function is a truth-table function of some propositional formula A.

Exercise 6. Show that for every propositional Boolean formula in the De Morgan language A there exists a formula ${ }^{1} A^{\prime}$ in the language using only the connectives form the set $\{\neg, \rightarrow\}$ (interpreted as negation and implication) such that $\mathbf{t t}_{A}=\mathbf{t t}_{A^{\prime}}$.

Definition 7. A propositional formula A is in the conjunctive normal form (CNF) if it is of the form $\bigwedge_{i} \bigvee_{j} \ell_{i j}$, where each $\ell_{i j}$ is either a propositional variable or a negation of one (a literal).

[^0]A propositional formula A is in the disjunctive normal form (DNF) if it is of the form $\bigvee_{i} \bigwedge_{j} \ell_{i j}$, where each $\ell_{i j}$ is a literal.

Disjunctions of literals are called clauses, and conjunctions of literals are called logical terms.

Exercise 8. Show that every Boolean function is a truth-table function of some DNF A and some CNF B.
Exercise 9. Show there is a fast (polynomial time) algorithm deciding whether a DNF A is satisfiable.

Exercise 10. Show there is a fast (polynomial time) algorithm deciding whether a CNF A is a tautology.
Exercise 11. Show that there is a Boolean function such that its smallest DNF representation is exponentially smaller than its CNF representation (or vice-versa).
Exercise 12 (bonus). Show that for each polynomial $p(x)$ there is a Boolean function with n inputs, which is not a truth-table function of any propositional formual A with less than $p(n)$ symbols.

Propositional Proof Systems

Definition 13. Let A be a finite set of symbols. We define $A^{\leq n}:=\bigcup_{i=0}^{n} A^{i}$ and $A^{*}:=\bigcup_{i \geq 0} A^{i}$.
Definition 14. A predicate $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is in \mathbf{P} if there is a Turing machine M computing f in polynomial time ${ }^{2}$.
Definition 15 (Cook-Reckhow). A propositional proof system (or a PPS) P is determined by a predicate $f(x, y)$ in \mathbf{P} such that for every propositional formula A:

$$
A \text { is a tautology } \Longleftrightarrow\left(\exists y \in\{0,1\}^{*}\right) f(A, y),
$$

here we interpret f to be a predicate checking that y is a valid "proof" of A. That is, if $f(A, y)=1$, then we say y is a P-proof of A.
Example 16. The truth-table proof system is a system determined by a predicate

$$
f(A, y)= \begin{cases}1 & y \text { is the truth-table of } A,(\forall \bar{x}) \mathbf{t t}_{A}(\bar{x})=1 \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 17. Show that the truth-table proof system is a propositional proof system by the definition of Cook-Reckhow.

Exercise 18 (First lower bound!). Show that every truth-table proof of a tautology is exponentially long in the size of that tautology.

[^1]
A Little Bit of Complexity

Definition $19\left(^{*}\right)$. A predicate $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is in NP if there is a function $g(x, y)$ in \mathbf{P} and a polynomial p such that for every $x \in\{0,1\}^{n}$:

$$
f(x)=1 \Longleftrightarrow\left(\exists y \in\{0,1\}^{\leq p(n)}\right) g(x, y)=1
$$

if such a y exists it is called the witness.
Definition $20\left(^{*}\right)$. A predicate $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is in coNP if there is a function $g(x, y)$ in \mathbf{P} and a polynomial p such that for every $x \in\{0,1\}^{n}$:

$$
f(x)=0 \Longleftrightarrow\left(\exists y \in\{0,1\}^{\leq p(n)}\right) g(x, y)=0
$$

Exercise $21\left(^{*}\right)$. Show that $f(x) \in \mathbf{N P}$ if and only if $\neg f(x) \in \mathbf{c o N P}$.
Theorem 22 (Cook-Reckhow). NP = coNP if and only if there is a propositional proof system P which has polynomial sized P-proofs of every tautology.

Exercise 23 (*). Prove the Cook-Reckhow theorem. $_{\text {(}}$

Frege systems I

Definition 24. The textbook Frege proof system is determined by the proofs of the following form:

The connectives in every formula in the system are just $\{\neg, \rightarrow\}$. A proof of a formula A is a sequence of propositional formulas $\left(B_{1}, \ldots, B_{k}\right)$, where $B_{k}=A$ and for each $1 \leq i \leq k$ one of the following is true:

- B_{i} has any of the forms

1. $p \rightarrow(q \rightarrow p)$
2. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r))$
3. $(\neg p \rightarrow \neg q) \rightarrow(q \rightarrow p)$,
where p, q and r are arbitrary formulas. Such a B_{i} is called an axiom (in the textbook Frege system).

- There are $1 \leq j_{1}, j_{2}<i$ such that $B_{j_{1}}=p, B_{j_{2}}=(p \rightarrow q)$ and $B_{i}=q$. Such a B_{i} is said to be introduced by the modus ponens rule:

$$
\frac{p, p \rightarrow q}{q}
$$

Example 25. Prove $(a \rightarrow a) \rightarrow(a \rightarrow(a \rightarrow a))$ in the textbook Frege system.
Example 26. Prove $(a \rightarrow b) \rightarrow(a \rightarrow a)$ in the textbook Frege system.
Example 27 (Bonus). Prove $a \rightarrow a$ in the textbook Frege system.
Open problem 28. Does every tautology have a polynomial sized proof in the textbook Frege system?

[^0]: ${ }^{1}$ This is not a propositional formula by our definition, but you can check an analogous definition can be made for this set of connectives.

[^1]: ${ }^{2}$ The precise definition of a Turing machine in fact does not matter. If you have never encountered the definition of a Turing machine, it is enough to consider the intuitive idea of an algorithm, whose number of steps does not exceed a specific polynomial in the length of the input and this itself just means, that the algorithm is somehow feasible - does not run too long. For example, such an algorithm cannot look at every truth assignment of a formula it receives as an input.

